mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-27 10:49:57 +00:00
853 lines
36 KiB
Python
853 lines
36 KiB
Python
import os
|
|
import asyncio
|
|
|
|
# import html
|
|
# import os
|
|
from dataclasses import dataclass
|
|
from typing import Any, Union
|
|
import numpy as np
|
|
import array
|
|
import pipmaster as pm
|
|
|
|
if not pm.is_installed("oracledb"):
|
|
pm.install("oracledb")
|
|
|
|
|
|
from ..utils import logger
|
|
from ..base import (
|
|
BaseGraphStorage,
|
|
BaseKVStorage,
|
|
BaseVectorStorage,
|
|
)
|
|
from ..namespace import NameSpace, is_namespace
|
|
|
|
import oracledb
|
|
|
|
|
|
class OracleDB:
|
|
def __init__(self, config, **kwargs):
|
|
self.host = config.get("host", None)
|
|
self.port = config.get("port", None)
|
|
self.user = config.get("user", None)
|
|
self.password = config.get("password", None)
|
|
self.dsn = config.get("dsn", None)
|
|
self.config_dir = config.get("config_dir", None)
|
|
self.wallet_location = config.get("wallet_location", None)
|
|
self.wallet_password = config.get("wallet_password", None)
|
|
self.workspace = config.get("workspace", None)
|
|
self.max = 12
|
|
self.increment = 1
|
|
logger.info(f"Using the label {self.workspace} for Oracle Graph as identifier")
|
|
if self.user is None or self.password is None:
|
|
raise ValueError("Missing database user or password in addon_params")
|
|
|
|
try:
|
|
oracledb.defaults.fetch_lobs = False
|
|
|
|
self.pool = oracledb.create_pool_async(
|
|
user=self.user,
|
|
password=self.password,
|
|
dsn=self.dsn,
|
|
config_dir=self.config_dir,
|
|
wallet_location=self.wallet_location,
|
|
wallet_password=self.wallet_password,
|
|
min=1,
|
|
max=self.max,
|
|
increment=self.increment,
|
|
)
|
|
logger.info(f"Connected to Oracle database at {self.dsn}")
|
|
except Exception as e:
|
|
logger.error(f"Failed to connect to Oracle database at {self.dsn}")
|
|
logger.error(f"Oracle database error: {e}")
|
|
raise
|
|
|
|
def numpy_converter_in(self, value):
|
|
"""Convert numpy array to array.array"""
|
|
if value.dtype == np.float64:
|
|
dtype = "d"
|
|
elif value.dtype == np.float32:
|
|
dtype = "f"
|
|
else:
|
|
dtype = "b"
|
|
return array.array(dtype, value)
|
|
|
|
def input_type_handler(self, cursor, value, arraysize):
|
|
"""Set the type handler for the input data"""
|
|
if isinstance(value, np.ndarray):
|
|
return cursor.var(
|
|
oracledb.DB_TYPE_VECTOR,
|
|
arraysize=arraysize,
|
|
inconverter=self.numpy_converter_in,
|
|
)
|
|
|
|
def numpy_converter_out(self, value):
|
|
"""Convert array.array to numpy array"""
|
|
if value.typecode == "b":
|
|
dtype = np.int8
|
|
elif value.typecode == "f":
|
|
dtype = np.float32
|
|
else:
|
|
dtype = np.float64
|
|
return np.array(value, copy=False, dtype=dtype)
|
|
|
|
def output_type_handler(self, cursor, metadata):
|
|
"""Set the type handler for the output data"""
|
|
if metadata.type_code is oracledb.DB_TYPE_VECTOR:
|
|
return cursor.var(
|
|
metadata.type_code,
|
|
arraysize=cursor.arraysize,
|
|
outconverter=self.numpy_converter_out,
|
|
)
|
|
|
|
async def check_tables(self):
|
|
for k, v in TABLES.items():
|
|
try:
|
|
if k.lower() == "lightrag_graph":
|
|
await self.query(
|
|
"SELECT id FROM GRAPH_TABLE (lightrag_graph MATCH (a) COLUMNS (a.id)) fetch first row only"
|
|
)
|
|
else:
|
|
await self.query("SELECT 1 FROM {k}".format(k=k))
|
|
except Exception as e:
|
|
logger.error(f"Failed to check table {k} in Oracle database")
|
|
logger.error(f"Oracle database error: {e}")
|
|
try:
|
|
# print(v["ddl"])
|
|
await self.execute(v["ddl"])
|
|
logger.info(f"Created table {k} in Oracle database")
|
|
except Exception as e:
|
|
logger.error(f"Failed to create table {k} in Oracle database")
|
|
logger.error(f"Oracle database error: {e}")
|
|
|
|
logger.info("Finished check all tables in Oracle database")
|
|
|
|
async def query(
|
|
self, sql: str, params: dict = None, multirows: bool = False
|
|
) -> Union[dict, None]:
|
|
async with self.pool.acquire() as connection:
|
|
connection.inputtypehandler = self.input_type_handler
|
|
connection.outputtypehandler = self.output_type_handler
|
|
with connection.cursor() as cursor:
|
|
try:
|
|
await cursor.execute(sql, params)
|
|
except Exception as e:
|
|
logger.error(f"Oracle database error: {e}")
|
|
print(sql)
|
|
print(params)
|
|
raise
|
|
columns = [column[0].lower() for column in cursor.description]
|
|
if multirows:
|
|
rows = await cursor.fetchall()
|
|
if rows:
|
|
data = [dict(zip(columns, row)) for row in rows]
|
|
else:
|
|
data = []
|
|
else:
|
|
row = await cursor.fetchone()
|
|
if row:
|
|
data = dict(zip(columns, row))
|
|
else:
|
|
data = None
|
|
return data
|
|
|
|
async def execute(self, sql: str, data: Union[list, dict] = None):
|
|
# logger.info("go into OracleDB execute method")
|
|
try:
|
|
async with self.pool.acquire() as connection:
|
|
connection.inputtypehandler = self.input_type_handler
|
|
connection.outputtypehandler = self.output_type_handler
|
|
with connection.cursor() as cursor:
|
|
if data is None:
|
|
await cursor.execute(sql)
|
|
else:
|
|
await cursor.execute(sql, data)
|
|
await connection.commit()
|
|
except Exception as e:
|
|
logger.error(f"Oracle database error: {e}")
|
|
print(sql)
|
|
print(data)
|
|
raise
|
|
|
|
|
|
@dataclass
|
|
class OracleKVStorage(BaseKVStorage):
|
|
# should pass db object to self.db
|
|
db: OracleDB = None
|
|
meta_fields = None
|
|
|
|
def __post_init__(self):
|
|
self._data = {}
|
|
self._max_batch_size = self.global_config.get("embedding_batch_num", 10)
|
|
|
|
################ QUERY METHODS ################
|
|
|
|
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
|
|
"""get doc_full data based on id."""
|
|
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
|
params = {"workspace": self.db.workspace, "id": id}
|
|
# print("get_by_id:"+SQL)
|
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
|
array_res = await self.db.query(SQL, params, multirows=True)
|
|
res = {}
|
|
for row in array_res:
|
|
res[row["id"]] = row
|
|
else:
|
|
res = await self.db.query(SQL, params)
|
|
if res:
|
|
return res
|
|
else:
|
|
return None
|
|
|
|
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
|
|
"""Specifically for llm_response_cache."""
|
|
SQL = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
|
params = {"workspace": self.db.workspace, "cache_mode": mode, "id": id}
|
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
|
array_res = await self.db.query(SQL, params, multirows=True)
|
|
res = {}
|
|
for row in array_res:
|
|
res[row["id"]] = row
|
|
return res
|
|
else:
|
|
return None
|
|
|
|
async def get_by_ids(self, ids: list[str]) -> list[Union[dict[str, Any], None]]:
|
|
"""get doc_chunks data based on id"""
|
|
SQL = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
|
|
ids=",".join([f"'{id}'" for id in ids])
|
|
)
|
|
params = {"workspace": self.db.workspace}
|
|
# print("get_by_ids:"+SQL)
|
|
res = await self.db.query(SQL, params, multirows=True)
|
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
|
modes = set()
|
|
dict_res: dict[str, dict] = {}
|
|
for row in res:
|
|
modes.add(row["mode"])
|
|
for mode in modes:
|
|
if mode not in dict_res:
|
|
dict_res[mode] = {}
|
|
for row in res:
|
|
dict_res[row["mode"]][row["id"]] = row
|
|
res = [{k: v} for k, v in dict_res.items()]
|
|
if res:
|
|
data = res # [{"data":i} for i in res]
|
|
# print(data)
|
|
return data
|
|
else:
|
|
return None
|
|
|
|
async def get_by_status_and_ids(
|
|
self, status: str
|
|
) -> Union[list[dict[str, Any]], None]:
|
|
"""Specifically for llm_response_cache."""
|
|
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
|
|
params = {"workspace": self.db.workspace, "status": status}
|
|
return await self.db.query(SQL, params, multirows=True)
|
|
|
|
async def filter_keys(self, keys: list[str]) -> set[str]:
|
|
"""Return keys that don't exist in storage"""
|
|
SQL = SQL_TEMPLATES["filter_keys"].format(
|
|
table_name=namespace_to_table_name(self.namespace),
|
|
ids=",".join([f"'{id}'" for id in keys]),
|
|
)
|
|
params = {"workspace": self.db.workspace}
|
|
res = await self.db.query(SQL, params, multirows=True)
|
|
if res:
|
|
exist_keys = [key["id"] for key in res]
|
|
data = set([s for s in keys if s not in exist_keys])
|
|
return data
|
|
else:
|
|
return set(keys)
|
|
|
|
################ INSERT METHODS ################
|
|
async def upsert(self, data: dict[str, Any]) -> None:
|
|
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
|
list_data = [
|
|
{
|
|
"id": k,
|
|
**{k1: v1 for k1, v1 in v.items()},
|
|
}
|
|
for k, v in data.items()
|
|
]
|
|
contents = [v["content"] for v in data.values()]
|
|
batches = [
|
|
contents[i : i + self._max_batch_size]
|
|
for i in range(0, len(contents), self._max_batch_size)
|
|
]
|
|
embeddings_list = await asyncio.gather(
|
|
*[self.embedding_func(batch) for batch in batches]
|
|
)
|
|
embeddings = np.concatenate(embeddings_list)
|
|
for i, d in enumerate(list_data):
|
|
d["__vector__"] = embeddings[i]
|
|
|
|
merge_sql = SQL_TEMPLATES["merge_chunk"]
|
|
for item in list_data:
|
|
_data = {
|
|
"id": item["id"],
|
|
"content": item["content"],
|
|
"workspace": self.db.workspace,
|
|
"tokens": item["tokens"],
|
|
"chunk_order_index": item["chunk_order_index"],
|
|
"full_doc_id": item["full_doc_id"],
|
|
"content_vector": item["__vector__"],
|
|
"status": item["status"],
|
|
}
|
|
await self.db.execute(merge_sql, _data)
|
|
if is_namespace(self.namespace, NameSpace.KV_STORE_FULL_DOCS):
|
|
for k, v in data.items():
|
|
# values.clear()
|
|
merge_sql = SQL_TEMPLATES["merge_doc_full"]
|
|
_data = {
|
|
"id": k,
|
|
"content": v["content"],
|
|
"workspace": self.db.workspace,
|
|
}
|
|
await self.db.execute(merge_sql, _data)
|
|
|
|
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
|
for mode, items in data.items():
|
|
for k, v in items.items():
|
|
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
|
_data = {
|
|
"workspace": self.db.workspace,
|
|
"id": k,
|
|
"original_prompt": v["original_prompt"],
|
|
"return_value": v["return"],
|
|
"cache_mode": mode,
|
|
}
|
|
|
|
await self.db.execute(upsert_sql, _data)
|
|
|
|
async def index_done_callback(self):
|
|
if is_namespace(
|
|
self.namespace,
|
|
(NameSpace.KV_STORE_FULL_DOCS, NameSpace.KV_STORE_TEXT_CHUNKS),
|
|
):
|
|
logger.info("full doc and chunk data had been saved into oracle db!")
|
|
|
|
|
|
@dataclass
|
|
class OracleVectorDBStorage(BaseVectorStorage):
|
|
# should pass db object to self.db
|
|
db: OracleDB = None
|
|
cosine_better_than_threshold: float = float(os.getenv("COSINE_THRESHOLD", "0.2"))
|
|
|
|
def __post_init__(self):
|
|
# Use global config value if specified, otherwise use default
|
|
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
|
self.cosine_better_than_threshold = config.get(
|
|
"cosine_better_than_threshold", self.cosine_better_than_threshold
|
|
)
|
|
|
|
async def upsert(self, data: dict[str, dict]):
|
|
"""向向量数据库中插入数据"""
|
|
pass
|
|
|
|
async def index_done_callback(self):
|
|
pass
|
|
|
|
#################### query method ###############
|
|
async def query(self, query: str, top_k=5) -> Union[dict, list[dict]]:
|
|
"""从向量数据库中查询数据"""
|
|
embeddings = await self.embedding_func([query])
|
|
embedding = embeddings[0]
|
|
# 转换精度
|
|
dtype = str(embedding.dtype).upper()
|
|
dimension = embedding.shape[0]
|
|
embedding_string = "[" + ", ".join(map(str, embedding.tolist())) + "]"
|
|
|
|
SQL = SQL_TEMPLATES[self.namespace].format(dimension=dimension, dtype=dtype)
|
|
params = {
|
|
"embedding_string": embedding_string,
|
|
"workspace": self.db.workspace,
|
|
"top_k": top_k,
|
|
"better_than_threshold": self.cosine_better_than_threshold,
|
|
}
|
|
# print(SQL)
|
|
results = await self.db.query(SQL, params=params, multirows=True)
|
|
# print("vector search result:",results)
|
|
return results
|
|
|
|
|
|
@dataclass
|
|
class OracleGraphStorage(BaseGraphStorage):
|
|
"""基于Oracle的图存储模块"""
|
|
|
|
def __post_init__(self):
|
|
"""从graphml文件加载图"""
|
|
self._max_batch_size = self.global_config.get("embedding_batch_num", 10)
|
|
|
|
#################### insert method ################
|
|
|
|
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
|
|
"""插入或更新节点"""
|
|
# print("go into upsert node method")
|
|
entity_name = node_id
|
|
entity_type = node_data["entity_type"]
|
|
description = node_data["description"]
|
|
source_id = node_data["source_id"]
|
|
logger.debug(f"entity_name:{entity_name}, entity_type:{entity_type}")
|
|
|
|
content = entity_name + description
|
|
contents = [content]
|
|
batches = [
|
|
contents[i : i + self._max_batch_size]
|
|
for i in range(0, len(contents), self._max_batch_size)
|
|
]
|
|
embeddings_list = await asyncio.gather(
|
|
*[self.embedding_func(batch) for batch in batches]
|
|
)
|
|
embeddings = np.concatenate(embeddings_list)
|
|
content_vector = embeddings[0]
|
|
merge_sql = SQL_TEMPLATES["merge_node"]
|
|
data = {
|
|
"workspace": self.db.workspace,
|
|
"name": entity_name,
|
|
"entity_type": entity_type,
|
|
"description": description,
|
|
"source_chunk_id": source_id,
|
|
"content": content,
|
|
"content_vector": content_vector,
|
|
}
|
|
await self.db.execute(merge_sql, data)
|
|
# self._graph.add_node(node_id, **node_data)
|
|
|
|
async def upsert_edge(
|
|
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
|
|
):
|
|
"""插入或更新边"""
|
|
# print("go into upsert edge method")
|
|
source_name = source_node_id
|
|
target_name = target_node_id
|
|
weight = edge_data["weight"]
|
|
keywords = edge_data["keywords"]
|
|
description = edge_data["description"]
|
|
source_chunk_id = edge_data["source_id"]
|
|
logger.debug(
|
|
f"source_name:{source_name}, target_name:{target_name}, keywords: {keywords}"
|
|
)
|
|
|
|
content = keywords + source_name + target_name + description
|
|
contents = [content]
|
|
batches = [
|
|
contents[i : i + self._max_batch_size]
|
|
for i in range(0, len(contents), self._max_batch_size)
|
|
]
|
|
embeddings_list = await asyncio.gather(
|
|
*[self.embedding_func(batch) for batch in batches]
|
|
)
|
|
embeddings = np.concatenate(embeddings_list)
|
|
content_vector = embeddings[0]
|
|
merge_sql = SQL_TEMPLATES["merge_edge"]
|
|
data = {
|
|
"workspace": self.db.workspace,
|
|
"source_name": source_name,
|
|
"target_name": target_name,
|
|
"weight": weight,
|
|
"keywords": keywords,
|
|
"description": description,
|
|
"source_chunk_id": source_chunk_id,
|
|
"content": content,
|
|
"content_vector": content_vector,
|
|
}
|
|
# print(merge_sql)
|
|
await self.db.execute(merge_sql, data)
|
|
# self._graph.add_edge(source_node_id, target_node_id, **edge_data)
|
|
|
|
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
|
|
"""为节点生成向量"""
|
|
if algorithm not in self._node_embed_algorithms:
|
|
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
|
return await self._node_embed_algorithms[algorithm]()
|
|
|
|
async def _node2vec_embed(self):
|
|
"""为节点生成向量"""
|
|
from graspologic import embed
|
|
|
|
embeddings, nodes = embed.node2vec_embed(
|
|
self._graph,
|
|
**self.config["node2vec_params"],
|
|
)
|
|
|
|
nodes_ids = [self._graph.nodes[node_id]["id"] for node_id in nodes]
|
|
return embeddings, nodes_ids
|
|
|
|
async def index_done_callback(self):
|
|
"""写入graphhml图文件"""
|
|
logger.info(
|
|
"Node and edge data had been saved into oracle db already, so nothing to do here!"
|
|
)
|
|
|
|
#################### query method #################
|
|
async def has_node(self, node_id: str) -> bool:
|
|
"""根据节点id检查节点是否存在"""
|
|
SQL = SQL_TEMPLATES["has_node"]
|
|
params = {"workspace": self.db.workspace, "node_id": node_id}
|
|
# print(SQL)
|
|
# print(self.db.workspace, node_id)
|
|
res = await self.db.query(SQL, params)
|
|
if res:
|
|
# print("Node exist!",res)
|
|
return True
|
|
else:
|
|
# print("Node not exist!")
|
|
return False
|
|
|
|
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
|
"""根据源和目标节点id检查边是否存在"""
|
|
SQL = SQL_TEMPLATES["has_edge"]
|
|
params = {
|
|
"workspace": self.db.workspace,
|
|
"source_node_id": source_node_id,
|
|
"target_node_id": target_node_id,
|
|
}
|
|
# print(SQL)
|
|
res = await self.db.query(SQL, params)
|
|
if res:
|
|
# print("Edge exist!",res)
|
|
return True
|
|
else:
|
|
# print("Edge not exist!")
|
|
return False
|
|
|
|
async def node_degree(self, node_id: str) -> int:
|
|
"""根据节点id获取节点的度"""
|
|
SQL = SQL_TEMPLATES["node_degree"]
|
|
params = {"workspace": self.db.workspace, "node_id": node_id}
|
|
# print(SQL)
|
|
res = await self.db.query(SQL, params)
|
|
if res:
|
|
# print("Node degree",res["degree"])
|
|
return res["degree"]
|
|
else:
|
|
# print("Edge not exist!")
|
|
return 0
|
|
|
|
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
|
"""根据源和目标节点id获取边的度"""
|
|
degree = await self.node_degree(src_id) + await self.node_degree(tgt_id)
|
|
# print("Edge degree",degree)
|
|
return degree
|
|
|
|
async def get_node(self, node_id: str) -> Union[dict, None]:
|
|
"""根据节点id获取节点数据"""
|
|
SQL = SQL_TEMPLATES["get_node"]
|
|
params = {"workspace": self.db.workspace, "node_id": node_id}
|
|
# print(self.db.workspace, node_id)
|
|
# print(SQL)
|
|
res = await self.db.query(SQL, params)
|
|
if res:
|
|
# print("Get node!",self.db.workspace, node_id,res)
|
|
return res
|
|
else:
|
|
# print("Can't get node!",self.db.workspace, node_id)
|
|
return None
|
|
|
|
async def get_edge(
|
|
self, source_node_id: str, target_node_id: str
|
|
) -> Union[dict, None]:
|
|
"""根据源和目标节点id获取边"""
|
|
SQL = SQL_TEMPLATES["get_edge"]
|
|
params = {
|
|
"workspace": self.db.workspace,
|
|
"source_node_id": source_node_id,
|
|
"target_node_id": target_node_id,
|
|
}
|
|
res = await self.db.query(SQL, params)
|
|
if res:
|
|
# print("Get edge!",self.db.workspace, source_node_id, target_node_id,res[0])
|
|
return res
|
|
else:
|
|
# print("Edge not exist!",self.db.workspace, source_node_id, target_node_id)
|
|
return None
|
|
|
|
async def get_node_edges(self, source_node_id: str):
|
|
"""根据节点id获取节点的所有边"""
|
|
if await self.has_node(source_node_id):
|
|
SQL = SQL_TEMPLATES["get_node_edges"]
|
|
params = {"workspace": self.db.workspace, "source_node_id": source_node_id}
|
|
res = await self.db.query(sql=SQL, params=params, multirows=True)
|
|
if res:
|
|
data = [(i["source_name"], i["target_name"]) for i in res]
|
|
# print("Get node edge!",self.db.workspace, source_node_id,data)
|
|
return data
|
|
else:
|
|
# print("Node Edge not exist!",self.db.workspace, source_node_id)
|
|
return []
|
|
|
|
async def get_all_nodes(self, limit: int):
|
|
"""查询所有节点"""
|
|
SQL = SQL_TEMPLATES["get_all_nodes"]
|
|
params = {"workspace": self.db.workspace, "limit": str(limit)}
|
|
res = await self.db.query(sql=SQL, params=params, multirows=True)
|
|
if res:
|
|
return res
|
|
|
|
async def get_all_edges(self, limit: int):
|
|
"""查询所有边"""
|
|
SQL = SQL_TEMPLATES["get_all_edges"]
|
|
params = {"workspace": self.db.workspace, "limit": str(limit)}
|
|
res = await self.db.query(sql=SQL, params=params, multirows=True)
|
|
if res:
|
|
return res
|
|
|
|
async def get_statistics(self):
|
|
SQL = SQL_TEMPLATES["get_statistics"]
|
|
params = {"workspace": self.db.workspace}
|
|
res = await self.db.query(sql=SQL, params=params, multirows=True)
|
|
if res:
|
|
return res
|
|
|
|
|
|
N_T = {
|
|
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
|
|
NameSpace.KV_STORE_TEXT_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
|
NameSpace.VECTOR_STORE_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
|
NameSpace.VECTOR_STORE_ENTITIES: "LIGHTRAG_GRAPH_NODES",
|
|
NameSpace.VECTOR_STORE_RELATIONSHIPS: "LIGHTRAG_GRAPH_EDGES",
|
|
}
|
|
|
|
|
|
def namespace_to_table_name(namespace: str) -> str:
|
|
for k, v in N_T.items():
|
|
if is_namespace(namespace, k):
|
|
return v
|
|
|
|
|
|
TABLES = {
|
|
"LIGHTRAG_DOC_FULL": {
|
|
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
|
|
id varchar(256),
|
|
workspace varchar(1024),
|
|
doc_name varchar(1024),
|
|
content CLOB,
|
|
meta JSON,
|
|
content_summary varchar(1024),
|
|
content_length NUMBER,
|
|
status varchar(256),
|
|
chunks_count NUMBER,
|
|
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
|
updatetime TIMESTAMP DEFAULT NULL,
|
|
error varchar(4096)
|
|
)"""
|
|
},
|
|
"LIGHTRAG_DOC_CHUNKS": {
|
|
"ddl": """CREATE TABLE LIGHTRAG_DOC_CHUNKS (
|
|
id varchar(256),
|
|
workspace varchar(1024),
|
|
full_doc_id varchar(256),
|
|
status varchar(256),
|
|
chunk_order_index NUMBER,
|
|
tokens NUMBER,
|
|
content CLOB,
|
|
content_vector VECTOR,
|
|
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
|
updatetime TIMESTAMP DEFAULT NULL
|
|
)"""
|
|
},
|
|
"LIGHTRAG_GRAPH_NODES": {
|
|
"ddl": """CREATE TABLE LIGHTRAG_GRAPH_NODES (
|
|
id NUMBER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
|
|
workspace varchar(1024),
|
|
name varchar(2048),
|
|
entity_type varchar(1024),
|
|
description CLOB,
|
|
source_chunk_id varchar(256),
|
|
content CLOB,
|
|
content_vector VECTOR,
|
|
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
|
updatetime TIMESTAMP DEFAULT NULL
|
|
)"""
|
|
},
|
|
"LIGHTRAG_GRAPH_EDGES": {
|
|
"ddl": """CREATE TABLE LIGHTRAG_GRAPH_EDGES (
|
|
id NUMBER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
|
|
workspace varchar(1024),
|
|
source_name varchar(2048),
|
|
target_name varchar(2048),
|
|
weight NUMBER,
|
|
keywords CLOB,
|
|
description CLOB,
|
|
source_chunk_id varchar(256),
|
|
content CLOB,
|
|
content_vector VECTOR,
|
|
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
|
updatetime TIMESTAMP DEFAULT NULL
|
|
)"""
|
|
},
|
|
"LIGHTRAG_LLM_CACHE": {
|
|
"ddl": """CREATE TABLE LIGHTRAG_LLM_CACHE (
|
|
id varchar(256) PRIMARY KEY,
|
|
workspace varchar(1024),
|
|
cache_mode varchar(256),
|
|
model_name varchar(256),
|
|
original_prompt clob,
|
|
return_value clob,
|
|
embedding CLOB,
|
|
embedding_shape NUMBER,
|
|
embedding_min NUMBER,
|
|
embedding_max NUMBER,
|
|
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
|
updatetime TIMESTAMP DEFAULT NULL
|
|
)"""
|
|
},
|
|
"LIGHTRAG_GRAPH": {
|
|
"ddl": """CREATE OR REPLACE PROPERTY GRAPH lightrag_graph
|
|
VERTEX TABLES (
|
|
lightrag_graph_nodes KEY (id)
|
|
LABEL entity
|
|
PROPERTIES (id,workspace,name) -- ,entity_type,description,source_chunk_id)
|
|
)
|
|
EDGE TABLES (
|
|
lightrag_graph_edges KEY (id)
|
|
SOURCE KEY (source_name) REFERENCES lightrag_graph_nodes(name)
|
|
DESTINATION KEY (target_name) REFERENCES lightrag_graph_nodes(name)
|
|
LABEL has_relation
|
|
PROPERTIES (id,workspace,source_name,target_name) -- ,weight, keywords,description,source_chunk_id)
|
|
) OPTIONS(ALLOW MIXED PROPERTY TYPES)"""
|
|
},
|
|
}
|
|
|
|
|
|
SQL_TEMPLATES = {
|
|
# SQL for KVStorage
|
|
"get_by_id_full_docs": "select ID,content,status from LIGHTRAG_DOC_FULL where workspace=:workspace and ID=:id",
|
|
"get_by_id_text_chunks": "select ID,TOKENS,content,CHUNK_ORDER_INDEX,FULL_DOC_ID,status from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID=:id",
|
|
"get_by_id_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
|
|
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND id=:id""",
|
|
"get_by_mode_id_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
|
|
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND cache_mode=:cache_mode AND id=:id""",
|
|
"get_by_ids_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
|
|
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND id IN ({ids})""",
|
|
"get_by_ids_full_docs": "select t.*,createtime as created_at from LIGHTRAG_DOC_FULL t where workspace=:workspace and ID in ({ids})",
|
|
"get_by_ids_text_chunks": "select ID,TOKENS,content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID in ({ids})",
|
|
"get_by_status_ids_full_docs": "select id,status from LIGHTRAG_DOC_FULL t where workspace=:workspace AND status=:status and ID in ({ids})",
|
|
"get_by_status_ids_text_chunks": "select id,status from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and status=:status ID in ({ids})",
|
|
"get_by_status_full_docs": "select id,status from LIGHTRAG_DOC_FULL t where workspace=:workspace AND status=:status",
|
|
"get_by_status_text_chunks": "select id,status from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and status=:status",
|
|
"filter_keys": "select id from {table_name} where workspace=:workspace and id in ({ids})",
|
|
"merge_doc_full": """MERGE INTO LIGHTRAG_DOC_FULL a
|
|
USING DUAL
|
|
ON (a.id = :id and a.workspace = :workspace)
|
|
WHEN NOT MATCHED THEN
|
|
INSERT(id,content,workspace) values(:id,:content,:workspace)""",
|
|
"merge_chunk": """MERGE INTO LIGHTRAG_DOC_CHUNKS
|
|
USING DUAL
|
|
ON (id = :id and workspace = :workspace)
|
|
WHEN NOT MATCHED THEN INSERT
|
|
(id,content,workspace,tokens,chunk_order_index,full_doc_id,content_vector,status)
|
|
values (:id,:content,:workspace,:tokens,:chunk_order_index,:full_doc_id,:content_vector,:status) """,
|
|
"upsert_llm_response_cache": """MERGE INTO LIGHTRAG_LLM_CACHE a
|
|
USING DUAL
|
|
ON (a.id = :id)
|
|
WHEN NOT MATCHED THEN
|
|
INSERT (workspace,id,original_prompt,return_value,cache_mode)
|
|
VALUES (:workspace,:id,:original_prompt,:return_value,:cache_mode)
|
|
WHEN MATCHED THEN UPDATE
|
|
SET original_prompt = :original_prompt,
|
|
return_value = :return_value,
|
|
cache_mode = :cache_mode,
|
|
updatetime = SYSDATE""",
|
|
# SQL for VectorStorage
|
|
"entities": """SELECT name as entity_name FROM
|
|
(SELECT id,name,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance
|
|
FROM LIGHTRAG_GRAPH_NODES WHERE workspace=:workspace)
|
|
WHERE distance>:better_than_threshold ORDER BY distance ASC FETCH FIRST :top_k ROWS ONLY""",
|
|
"relationships": """SELECT source_name as src_id, target_name as tgt_id FROM
|
|
(SELECT id,source_name,target_name,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance
|
|
FROM LIGHTRAG_GRAPH_EDGES WHERE workspace=:workspace)
|
|
WHERE distance>:better_than_threshold ORDER BY distance ASC FETCH FIRST :top_k ROWS ONLY""",
|
|
"chunks": """SELECT id FROM
|
|
(SELECT id,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance
|
|
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=:workspace)
|
|
WHERE distance>:better_than_threshold ORDER BY distance ASC FETCH FIRST :top_k ROWS ONLY""",
|
|
# SQL for GraphStorage
|
|
"has_node": """SELECT * FROM GRAPH_TABLE (lightrag_graph
|
|
MATCH (a)
|
|
WHERE a.workspace=:workspace AND a.name=:node_id
|
|
COLUMNS (a.name))""",
|
|
"has_edge": """SELECT * FROM GRAPH_TABLE (lightrag_graph
|
|
MATCH (a) -[e]-> (b)
|
|
WHERE e.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace
|
|
AND a.name=:source_node_id AND b.name=:target_node_id
|
|
COLUMNS (e.source_name,e.target_name) )""",
|
|
"node_degree": """SELECT count(1) as degree FROM GRAPH_TABLE (lightrag_graph
|
|
MATCH (a)-[e]->(b)
|
|
WHERE e.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace
|
|
AND a.name=:node_id or b.name = :node_id
|
|
COLUMNS (a.name))""",
|
|
"get_node": """SELECT t1.name,t2.entity_type,t2.source_chunk_id as source_id,NVL(t2.description,'') AS description
|
|
FROM GRAPH_TABLE (lightrag_graph
|
|
MATCH (a)
|
|
WHERE a.workspace=:workspace AND a.name=:node_id
|
|
COLUMNS (a.name)
|
|
) t1 JOIN LIGHTRAG_GRAPH_NODES t2 on t1.name=t2.name
|
|
WHERE t2.workspace=:workspace""",
|
|
"get_edge": """SELECT t1.source_id,t2.weight,t2.source_chunk_id as source_id,t2.keywords,
|
|
NVL(t2.description,'') AS description,NVL(t2.KEYWORDS,'') AS keywords
|
|
FROM GRAPH_TABLE (lightrag_graph
|
|
MATCH (a)-[e]->(b)
|
|
WHERE e.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace
|
|
AND a.name=:source_node_id and b.name = :target_node_id
|
|
COLUMNS (e.id,a.name as source_id)
|
|
) t1 JOIN LIGHTRAG_GRAPH_EDGES t2 on t1.id=t2.id""",
|
|
"get_node_edges": """SELECT source_name,target_name
|
|
FROM GRAPH_TABLE (lightrag_graph
|
|
MATCH (a)-[e]->(b)
|
|
WHERE e.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace
|
|
AND a.name=:source_node_id
|
|
COLUMNS (a.name as source_name,b.name as target_name))""",
|
|
"merge_node": """MERGE INTO LIGHTRAG_GRAPH_NODES a
|
|
USING DUAL
|
|
ON (a.workspace=:workspace and a.name=:name)
|
|
WHEN NOT MATCHED THEN
|
|
INSERT(workspace,name,entity_type,description,source_chunk_id,content,content_vector)
|
|
values (:workspace,:name,:entity_type,:description,:source_chunk_id,:content,:content_vector)
|
|
WHEN MATCHED THEN
|
|
UPDATE SET
|
|
entity_type=:entity_type,description=:description,source_chunk_id=:source_chunk_id,content=:content,content_vector=:content_vector,updatetime=SYSDATE""",
|
|
"merge_edge": """MERGE INTO LIGHTRAG_GRAPH_EDGES a
|
|
USING DUAL
|
|
ON (a.workspace=:workspace and a.source_name=:source_name and a.target_name=:target_name)
|
|
WHEN NOT MATCHED THEN
|
|
INSERT(workspace,source_name,target_name,weight,keywords,description,source_chunk_id,content,content_vector)
|
|
values (:workspace,:source_name,:target_name,:weight,:keywords,:description,:source_chunk_id,:content,:content_vector)
|
|
WHEN MATCHED THEN
|
|
UPDATE SET
|
|
weight=:weight,keywords=:keywords,description=:description,source_chunk_id=:source_chunk_id,content=:content,content_vector=:content_vector,updatetime=SYSDATE""",
|
|
"get_all_nodes": """WITH t0 AS (
|
|
SELECT name AS id, entity_type AS label, entity_type, description,
|
|
'["' || replace(source_chunk_id, '<SEP>', '","') || '"]' source_chunk_ids
|
|
FROM lightrag_graph_nodes
|
|
WHERE workspace = :workspace
|
|
ORDER BY createtime DESC fetch first :limit rows only
|
|
), t1 AS (
|
|
SELECT t0.id, source_chunk_id
|
|
FROM t0, JSON_TABLE ( source_chunk_ids, '$[*]' COLUMNS ( source_chunk_id PATH '$' ) )
|
|
), t2 AS (
|
|
SELECT t1.id, LISTAGG(t2.content, '\n') content
|
|
FROM t1 LEFT JOIN lightrag_doc_chunks t2 ON t1.source_chunk_id = t2.id
|
|
GROUP BY t1.id
|
|
)
|
|
SELECT t0.id, label, entity_type, description, t2.content
|
|
FROM t0 LEFT JOIN t2 ON t0.id = t2.id""",
|
|
"get_all_edges": """SELECT t1.id,t1.keywords as label,t1.keywords, t1.source_name as source, t1.target_name as target,
|
|
t1.weight,t1.DESCRIPTION,t2.content
|
|
FROM LIGHTRAG_GRAPH_EDGES t1
|
|
LEFT JOIN LIGHTRAG_DOC_CHUNKS t2 on t1.source_chunk_id=t2.id
|
|
WHERE t1.workspace=:workspace
|
|
order by t1.CREATETIME DESC
|
|
fetch first :limit rows only""",
|
|
"get_statistics": """select count(distinct CASE WHEN type='node' THEN id END) as nodes_count,
|
|
count(distinct CASE WHEN type='edge' THEN id END) as edges_count
|
|
FROM (
|
|
select 'node' as type, id FROM GRAPH_TABLE (lightrag_graph
|
|
MATCH (a) WHERE a.workspace=:workspace columns(a.name as id))
|
|
UNION
|
|
select 'edge' as type, TO_CHAR(id) id FROM GRAPH_TABLE (lightrag_graph
|
|
MATCH (a)-[e]->(b) WHERE e.workspace=:workspace columns(e.id))
|
|
)""",
|
|
}
|