LightRAG/lightrag/llm/azure_openai.py
2025-02-18 21:12:06 +01:00

147 lines
4.2 KiB
Python

import os
import pipmaster as pm # Pipmaster for dynamic library install
# install specific modules
if not pm.is_installed("openai"):
pm.install("openai")
if not pm.is_installed("tenacity"):
pm.install("tenacity")
from openai import (
AsyncAzureOpenAI,
APIConnectionError,
RateLimitError,
APITimeoutError,
)
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
retry_if_exception_type,
)
from lightrag.utils import (
wrap_embedding_func_with_attrs,
locate_json_string_body_from_string,
safe_unicode_decode,
)
import numpy as np
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type(
(RateLimitError, APIConnectionError, APIConnectionError)
),
)
async def azure_openai_complete_if_cache(
model,
prompt,
system_prompt=None,
history_messages=[],
base_url=None,
api_key=None,
api_version=None,
**kwargs,
):
if api_key:
os.environ["AZURE_OPENAI_API_KEY"] = api_key
if base_url:
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
if api_version:
os.environ["AZURE_OPENAI_API_VERSION"] = api_version
openai_async_client = AsyncAzureOpenAI(
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
)
kwargs.pop("hashing_kv", None)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.extend(history_messages)
if prompt is not None:
messages.append({"role": "user", "content": prompt})
if "response_format" in kwargs:
response = await openai_async_client.beta.chat.completions.parse(
model=model, messages=messages, **kwargs
)
else:
response = await openai_async_client.chat.completions.create(
model=model, messages=messages, **kwargs
)
if hasattr(response, "__aiter__"):
async def inner():
async for chunk in response:
if len(chunk.choices) == 0:
continue
content = chunk.choices[0].delta.content
if content is None:
continue
if r"\u" in content:
content = safe_unicode_decode(content.encode("utf-8"))
yield content
return inner()
else:
content = response.choices[0].message.content
if r"\u" in content:
content = safe_unicode_decode(content.encode("utf-8"))
return content
async def azure_openai_complete(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
keyword_extraction = kwargs.pop("keyword_extraction", None)
result = await azure_openai_complete_if_cache(
os.getenv("LLM_MODEL", "gpt-4o-mini"),
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
if keyword_extraction: # TODO: use JSON API
return locate_json_string_body_from_string(result)
return result
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8191)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type(
(RateLimitError, APIConnectionError, APITimeoutError)
),
)
async def azure_openai_embed(
texts: list[str],
model: str = os.getenv("EMBEDDING_MODEL", "text-embedding-3-small"),
base_url: str = None,
api_key: str = None,
api_version: str = None,
) -> np.ndarray:
if api_key:
os.environ["AZURE_OPENAI_API_KEY"] = api_key
if base_url:
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
if api_version:
os.environ["AZURE_OPENAI_API_VERSION"] = api_version
openai_async_client = AsyncAzureOpenAI(
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
)
response = await openai_async_client.embeddings.create(
model=model, input=texts, encoding_format="float"
)
return np.array([dp.embedding for dp in response.data])