mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-10-31 01:39:56 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			175 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			175 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from fastapi import FastAPI, HTTPException, File, UploadFile
 | |
| from pydantic import BaseModel
 | |
| import os
 | |
| from lightrag import LightRAG, QueryParam
 | |
| from lightrag.llm.openai import openai_complete_if_cache, openai_embed
 | |
| from lightrag.utils import EmbeddingFunc
 | |
| import numpy as np
 | |
| from typing import Optional
 | |
| import asyncio
 | |
| import nest_asyncio
 | |
| 
 | |
| # Apply nest_asyncio to solve event loop issues
 | |
| nest_asyncio.apply()
 | |
| 
 | |
| DEFAULT_RAG_DIR = "index_default"
 | |
| app = FastAPI(title="LightRAG API", description="API for RAG operations")
 | |
| 
 | |
| # Configure working directory
 | |
| WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
 | |
| print(f"WORKING_DIR: {WORKING_DIR}")
 | |
| LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini")
 | |
| print(f"LLM_MODEL: {LLM_MODEL}")
 | |
| EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
 | |
| print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
 | |
| EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
 | |
| print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
 | |
| 
 | |
| if not os.path.exists(WORKING_DIR):
 | |
|     os.mkdir(WORKING_DIR)
 | |
| 
 | |
| 
 | |
| # LLM model function
 | |
| 
 | |
| 
 | |
| async def llm_model_func(
 | |
|     prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
 | |
| ) -> str:
 | |
|     return await openai_complete_if_cache(
 | |
|         LLM_MODEL,
 | |
|         prompt,
 | |
|         system_prompt=system_prompt,
 | |
|         history_messages=history_messages,
 | |
|         **kwargs,
 | |
|     )
 | |
| 
 | |
| 
 | |
| # Embedding function
 | |
| 
 | |
| 
 | |
| async def embedding_func(texts: list[str]) -> np.ndarray:
 | |
|     return await openai_embed(
 | |
|         texts,
 | |
|         model=EMBEDDING_MODEL,
 | |
|     )
 | |
| 
 | |
| 
 | |
| async def get_embedding_dim():
 | |
|     test_text = ["This is a test sentence."]
 | |
|     embedding = await embedding_func(test_text)
 | |
|     embedding_dim = embedding.shape[1]
 | |
|     print(f"{embedding_dim=}")
 | |
|     return embedding_dim
 | |
| 
 | |
| 
 | |
| # Initialize RAG instance
 | |
| rag = LightRAG(
 | |
|     working_dir=WORKING_DIR,
 | |
|     llm_model_func=llm_model_func,
 | |
|     embedding_func=EmbeddingFunc(
 | |
|         embedding_dim=asyncio.run(get_embedding_dim()),
 | |
|         max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
 | |
|         func=embedding_func,
 | |
|     ),
 | |
| )
 | |
| 
 | |
| 
 | |
| # Data models
 | |
| 
 | |
| 
 | |
| class QueryRequest(BaseModel):
 | |
|     query: str
 | |
|     mode: str = "hybrid"
 | |
|     only_need_context: bool = False
 | |
| 
 | |
| 
 | |
| class InsertRequest(BaseModel):
 | |
|     text: str
 | |
| 
 | |
| 
 | |
| class Response(BaseModel):
 | |
|     status: str
 | |
|     data: Optional[str] = None
 | |
|     message: Optional[str] = None
 | |
| 
 | |
| 
 | |
| # API routes
 | |
| 
 | |
| 
 | |
| @app.post("/query", response_model=Response)
 | |
| async def query_endpoint(request: QueryRequest):
 | |
|     try:
 | |
|         loop = asyncio.get_event_loop()
 | |
|         result = await loop.run_in_executor(
 | |
|             None,
 | |
|             lambda: rag.query(
 | |
|                 request.query,
 | |
|                 param=QueryParam(
 | |
|                     mode=request.mode, only_need_context=request.only_need_context
 | |
|                 ),
 | |
|             ),
 | |
|         )
 | |
|         return Response(status="success", data=result)
 | |
|     except Exception as e:
 | |
|         raise HTTPException(status_code=500, detail=str(e))
 | |
| 
 | |
| 
 | |
| @app.post("/insert", response_model=Response)
 | |
| async def insert_endpoint(request: InsertRequest):
 | |
|     try:
 | |
|         loop = asyncio.get_event_loop()
 | |
|         await loop.run_in_executor(None, lambda: rag.insert(request.text))
 | |
|         return Response(status="success", message="Text inserted successfully")
 | |
|     except Exception as e:
 | |
|         raise HTTPException(status_code=500, detail=str(e))
 | |
| 
 | |
| 
 | |
| @app.post("/insert_file", response_model=Response)
 | |
| async def insert_file(file: UploadFile = File(...)):
 | |
|     try:
 | |
|         file_content = await file.read()
 | |
|         # Read file content
 | |
|         try:
 | |
|             content = file_content.decode("utf-8")
 | |
|         except UnicodeDecodeError:
 | |
|             # If UTF-8 decoding fails, try other encodings
 | |
|             content = file_content.decode("gbk")
 | |
|         # Insert file content
 | |
|         loop = asyncio.get_event_loop()
 | |
|         await loop.run_in_executor(None, lambda: rag.insert(content))
 | |
| 
 | |
|         return Response(
 | |
|             status="success",
 | |
|             message=f"File content from {file.filename} inserted successfully",
 | |
|         )
 | |
|     except Exception as e:
 | |
|         raise HTTPException(status_code=500, detail=str(e))
 | |
| 
 | |
| 
 | |
| @app.get("/health")
 | |
| async def health_check():
 | |
|     return {"status": "healthy"}
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     import uvicorn
 | |
| 
 | |
|     uvicorn.run(app, host="0.0.0.0", port=8020)
 | |
| 
 | |
| # Usage example
 | |
| # To run the server, use the following command in your terminal:
 | |
| # python lightrag_api_openai_compatible_demo.py
 | |
| 
 | |
| # Example requests:
 | |
| # 1. Query:
 | |
| # curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
 | |
| 
 | |
| # 2. Insert text:
 | |
| # curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
 | |
| 
 | |
| # 3. Insert file:
 | |
| # curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
 | |
| 
 | |
| # 4. Health check:
 | |
| # curl -X GET "http://127.0.0.1:8020/health"
 | 
