mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-10-31 09:49:54 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			111 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| import asyncio
 | |
| from lightrag import LightRAG, QueryParam
 | |
| from lightrag.utils import EmbeddingFunc
 | |
| import numpy as np
 | |
| from dotenv import load_dotenv
 | |
| import logging
 | |
| from openai import AzureOpenAI
 | |
| 
 | |
| logging.basicConfig(level=logging.INFO)
 | |
| 
 | |
| load_dotenv()
 | |
| 
 | |
| AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION")
 | |
| AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT")
 | |
| AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
 | |
| AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
 | |
| 
 | |
| AZURE_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
 | |
| AZURE_EMBEDDING_API_VERSION = os.getenv("AZURE_EMBEDDING_API_VERSION")
 | |
| 
 | |
| WORKING_DIR = "./dickens"
 | |
| 
 | |
| if os.path.exists(WORKING_DIR):
 | |
|     import shutil
 | |
| 
 | |
|     shutil.rmtree(WORKING_DIR)
 | |
| 
 | |
| os.mkdir(WORKING_DIR)
 | |
| 
 | |
| 
 | |
| async def llm_model_func(
 | |
|     prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
 | |
| ) -> str:
 | |
|     client = AzureOpenAI(
 | |
|         api_key=AZURE_OPENAI_API_KEY,
 | |
|         api_version=AZURE_OPENAI_API_VERSION,
 | |
|         azure_endpoint=AZURE_OPENAI_ENDPOINT,
 | |
|     )
 | |
| 
 | |
|     messages = []
 | |
|     if system_prompt:
 | |
|         messages.append({"role": "system", "content": system_prompt})
 | |
|     if history_messages:
 | |
|         messages.extend(history_messages)
 | |
|     messages.append({"role": "user", "content": prompt})
 | |
| 
 | |
|     chat_completion = client.chat.completions.create(
 | |
|         model=AZURE_OPENAI_DEPLOYMENT,  # model = "deployment_name".
 | |
|         messages=messages,
 | |
|         temperature=kwargs.get("temperature", 0),
 | |
|         top_p=kwargs.get("top_p", 1),
 | |
|         n=kwargs.get("n", 1),
 | |
|     )
 | |
|     return chat_completion.choices[0].message.content
 | |
| 
 | |
| 
 | |
| async def embedding_func(texts: list[str]) -> np.ndarray:
 | |
|     client = AzureOpenAI(
 | |
|         api_key=AZURE_OPENAI_API_KEY,
 | |
|         api_version=AZURE_EMBEDDING_API_VERSION,
 | |
|         azure_endpoint=AZURE_OPENAI_ENDPOINT,
 | |
|     )
 | |
|     embedding = client.embeddings.create(model=AZURE_EMBEDDING_DEPLOYMENT, input=texts)
 | |
| 
 | |
|     embeddings = [item.embedding for item in embedding.data]
 | |
|     return np.array(embeddings)
 | |
| 
 | |
| 
 | |
| async def test_funcs():
 | |
|     result = await llm_model_func("How are you?")
 | |
|     print("Resposta do llm_model_func: ", result)
 | |
| 
 | |
|     result = await embedding_func(["How are you?"])
 | |
|     print("Resultado do embedding_func: ", result.shape)
 | |
|     print("Dimensão da embedding: ", result.shape[1])
 | |
| 
 | |
| 
 | |
| asyncio.run(test_funcs())
 | |
| 
 | |
| embedding_dimension = 3072
 | |
| 
 | |
| rag = LightRAG(
 | |
|     working_dir=WORKING_DIR,
 | |
|     llm_model_func=llm_model_func,
 | |
|     embedding_func=EmbeddingFunc(
 | |
|         embedding_dim=embedding_dimension,
 | |
|         max_token_size=8192,
 | |
|         func=embedding_func,
 | |
|     ),
 | |
| )
 | |
| 
 | |
| book1 = open("./book_1.txt", encoding="utf-8")
 | |
| book2 = open("./book_2.txt", encoding="utf-8")
 | |
| 
 | |
| rag.insert([book1.read(), book2.read()])
 | |
| 
 | |
| query_text = "What are the main themes?"
 | |
| 
 | |
| print("Result (Naive):")
 | |
| print(rag.query(query_text, param=QueryParam(mode="naive")))
 | |
| 
 | |
| print("\nResult (Local):")
 | |
| print(rag.query(query_text, param=QueryParam(mode="local")))
 | |
| 
 | |
| print("\nResult (Global):")
 | |
| print(rag.query(query_text, param=QueryParam(mode="global")))
 | |
| 
 | |
| print("\nResult (Hybrid):")
 | |
| print(rag.query(query_text, param=QueryParam(mode="hybrid")))
 | 
