mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-10-31 01:39:56 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			81 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| 
 | |
| from lightrag import LightRAG, QueryParam
 | |
| from lightrag.llm.lmdeploy import lmdeploy_model_if_cache
 | |
| from lightrag.llm.hf import hf_embed
 | |
| from lightrag.utils import EmbeddingFunc
 | |
| from transformers import AutoModel, AutoTokenizer
 | |
| 
 | |
| WORKING_DIR = "./dickens"
 | |
| 
 | |
| if not os.path.exists(WORKING_DIR):
 | |
|     os.mkdir(WORKING_DIR)
 | |
| 
 | |
| 
 | |
| async def lmdeploy_model_complete(
 | |
|     prompt=None,
 | |
|     system_prompt=None,
 | |
|     history_messages=[],
 | |
|     keyword_extraction=False,
 | |
|     **kwargs,
 | |
| ) -> str:
 | |
|     model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
 | |
|     return await lmdeploy_model_if_cache(
 | |
|         model_name,
 | |
|         prompt,
 | |
|         system_prompt=system_prompt,
 | |
|         history_messages=history_messages,
 | |
|         ## please specify chat_template if your local path does not follow original HF file name,
 | |
|         ## or model_name is a pytorch model on huggingface.co,
 | |
|         ## you can refer to https://github.com/InternLM/lmdeploy/blob/main/lmdeploy/model.py
 | |
|         ## for a list of chat_template available in lmdeploy.
 | |
|         chat_template="llama3",
 | |
|         # model_format ='awq', # if you are using awq quantization model.
 | |
|         # quant_policy=8, # if you want to use online kv cache, 4=kv int4, 8=kv int8.
 | |
|         **kwargs,
 | |
|     )
 | |
| 
 | |
| 
 | |
| rag = LightRAG(
 | |
|     working_dir=WORKING_DIR,
 | |
|     llm_model_func=lmdeploy_model_complete,
 | |
|     llm_model_name="meta-llama/Llama-3.1-8B-Instruct",  # please use definite path for local model
 | |
|     embedding_func=EmbeddingFunc(
 | |
|         embedding_dim=384,
 | |
|         max_token_size=5000,
 | |
|         func=lambda texts: hf_embed(
 | |
|             texts,
 | |
|             tokenizer=AutoTokenizer.from_pretrained(
 | |
|                 "sentence-transformers/all-MiniLM-L6-v2"
 | |
|             ),
 | |
|             embed_model=AutoModel.from_pretrained(
 | |
|                 "sentence-transformers/all-MiniLM-L6-v2"
 | |
|             ),
 | |
|         ),
 | |
|     ),
 | |
| )
 | |
| 
 | |
| 
 | |
| with open("./book.txt", "r", encoding="utf-8") as f:
 | |
|     rag.insert(f.read())
 | |
| 
 | |
| # Perform naive search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
 | |
| )
 | |
| 
 | |
| # Perform local search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
 | |
| )
 | |
| 
 | |
| # Perform global search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
 | |
| )
 | |
| 
 | |
| # Perform hybrid search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
 | |
| )
 | 
