mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-10-31 09:49:54 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			40 lines
		
	
	
		
			890 B
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			40 lines
		
	
	
		
			890 B
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| 
 | |
| from lightrag import LightRAG, QueryParam
 | |
| from lightrag.llm.openai import gpt_4o_mini_complete
 | |
| 
 | |
| WORKING_DIR = "./dickens"
 | |
| 
 | |
| if not os.path.exists(WORKING_DIR):
 | |
|     os.mkdir(WORKING_DIR)
 | |
| 
 | |
| rag = LightRAG(
 | |
|     working_dir=WORKING_DIR,
 | |
|     llm_model_func=gpt_4o_mini_complete,
 | |
|     # llm_model_func=gpt_4o_complete
 | |
| )
 | |
| 
 | |
| 
 | |
| with open("./book.txt", "r", encoding="utf-8") as f:
 | |
|     rag.insert(f.read())
 | |
| 
 | |
| # Perform naive search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
 | |
| )
 | |
| 
 | |
| # Perform local search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
 | |
| )
 | |
| 
 | |
| # Perform global search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
 | |
| )
 | |
| 
 | |
| # Perform hybrid search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
 | |
| )
 | 
