mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-10-31 09:49:54 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			81 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			81 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| import asyncio
 | |
| from lightrag import LightRAG, QueryParam
 | |
| from lightrag.llm.openai import openai_complete_if_cache
 | |
| from lightrag.llm.siliconcloud import siliconcloud_embedding
 | |
| from lightrag.utils import EmbeddingFunc
 | |
| import numpy as np
 | |
| 
 | |
| WORKING_DIR = "./dickens"
 | |
| 
 | |
| if not os.path.exists(WORKING_DIR):
 | |
|     os.mkdir(WORKING_DIR)
 | |
| 
 | |
| 
 | |
| async def llm_model_func(
 | |
|     prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
 | |
| ) -> str:
 | |
|     return await openai_complete_if_cache(
 | |
|         "Qwen/Qwen2.5-7B-Instruct",
 | |
|         prompt,
 | |
|         system_prompt=system_prompt,
 | |
|         history_messages=history_messages,
 | |
|         api_key=os.getenv("SILICONFLOW_API_KEY"),
 | |
|         base_url="https://api.siliconflow.cn/v1/",
 | |
|         **kwargs,
 | |
|     )
 | |
| 
 | |
| 
 | |
| async def embedding_func(texts: list[str]) -> np.ndarray:
 | |
|     return await siliconcloud_embedding(
 | |
|         texts,
 | |
|         model="netease-youdao/bce-embedding-base_v1",
 | |
|         api_key=os.getenv("SILICONFLOW_API_KEY"),
 | |
|         max_token_size=512,
 | |
|     )
 | |
| 
 | |
| 
 | |
| # function test
 | |
| async def test_funcs():
 | |
|     result = await llm_model_func("How are you?")
 | |
|     print("llm_model_func: ", result)
 | |
| 
 | |
|     result = await embedding_func(["How are you?"])
 | |
|     print("embedding_func: ", result)
 | |
| 
 | |
| 
 | |
| asyncio.run(test_funcs())
 | |
| 
 | |
| 
 | |
| rag = LightRAG(
 | |
|     working_dir=WORKING_DIR,
 | |
|     llm_model_func=llm_model_func,
 | |
|     embedding_func=EmbeddingFunc(
 | |
|         embedding_dim=768, max_token_size=512, func=embedding_func
 | |
|     ),
 | |
| )
 | |
| 
 | |
| 
 | |
| with open("./book.txt") as f:
 | |
|     rag.insert(f.read())
 | |
| 
 | |
| # Perform naive search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
 | |
| )
 | |
| 
 | |
| # Perform local search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
 | |
| )
 | |
| 
 | |
| # Perform global search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
 | |
| )
 | |
| 
 | |
| # Perform hybrid search
 | |
| print(
 | |
|     rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
 | |
| )
 | 
