mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00

- Enable the llm_cache storage to support get_by_mode_and_id, to improve the performance for using real KV server - Provide an option for the developers to cache the LLM response when extracting entities for a document. Solving the paint point that sometimes the process failed, the processed chunks we need to call LLM again, money and time wasted. With the new option (by default not enabled) enabling, we can cache that result, can significantly save the time and money for beginners.
570 lines
18 KiB
Python
570 lines
18 KiB
Python
import asyncio
|
|
import html
|
|
import io
|
|
import csv
|
|
import json
|
|
import logging
|
|
import os
|
|
import re
|
|
from dataclasses import dataclass
|
|
from functools import wraps
|
|
from hashlib import md5
|
|
from typing import Any, Union, List, Optional
|
|
import xml.etree.ElementTree as ET
|
|
|
|
import numpy as np
|
|
import tiktoken
|
|
|
|
from lightrag.prompt import PROMPTS
|
|
|
|
|
|
class UnlimitedSemaphore:
|
|
"""A context manager that allows unlimited access."""
|
|
|
|
async def __aenter__(self):
|
|
pass
|
|
|
|
async def __aexit__(self, exc_type, exc, tb):
|
|
pass
|
|
|
|
|
|
ENCODER = None
|
|
|
|
logger = logging.getLogger("lightrag")
|
|
|
|
|
|
def set_logger(log_file: str):
|
|
logger.setLevel(logging.DEBUG)
|
|
|
|
file_handler = logging.FileHandler(log_file)
|
|
file_handler.setLevel(logging.DEBUG)
|
|
|
|
formatter = logging.Formatter(
|
|
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
|
)
|
|
file_handler.setFormatter(formatter)
|
|
|
|
if not logger.handlers:
|
|
logger.addHandler(file_handler)
|
|
|
|
|
|
@dataclass
|
|
class EmbeddingFunc:
|
|
embedding_dim: int
|
|
max_token_size: int
|
|
func: callable
|
|
concurrent_limit: int = 16
|
|
|
|
def __post_init__(self):
|
|
if self.concurrent_limit != 0:
|
|
self._semaphore = asyncio.Semaphore(self.concurrent_limit)
|
|
else:
|
|
self._semaphore = UnlimitedSemaphore()
|
|
|
|
async def __call__(self, *args, **kwargs) -> np.ndarray:
|
|
async with self._semaphore:
|
|
return await self.func(*args, **kwargs)
|
|
|
|
|
|
def locate_json_string_body_from_string(content: str) -> Union[str, None]:
|
|
"""Locate the JSON string body from a string"""
|
|
try:
|
|
maybe_json_str = re.search(r"{.*}", content, re.DOTALL)
|
|
if maybe_json_str is not None:
|
|
maybe_json_str = maybe_json_str.group(0)
|
|
maybe_json_str = maybe_json_str.replace("\\n", "")
|
|
maybe_json_str = maybe_json_str.replace("\n", "")
|
|
maybe_json_str = maybe_json_str.replace("'", '"')
|
|
# json.loads(maybe_json_str) # don't check here, cannot validate schema after all
|
|
return maybe_json_str
|
|
except Exception:
|
|
pass
|
|
# try:
|
|
# content = (
|
|
# content.replace(kw_prompt[:-1], "")
|
|
# .replace("user", "")
|
|
# .replace("model", "")
|
|
# .strip()
|
|
# )
|
|
# maybe_json_str = "{" + content.split("{")[1].split("}")[0] + "}"
|
|
# json.loads(maybe_json_str)
|
|
|
|
return None
|
|
|
|
|
|
def convert_response_to_json(response: str) -> dict:
|
|
json_str = locate_json_string_body_from_string(response)
|
|
assert json_str is not None, f"Unable to parse JSON from response: {response}"
|
|
try:
|
|
data = json.loads(json_str)
|
|
return data
|
|
except json.JSONDecodeError as e:
|
|
logger.error(f"Failed to parse JSON: {json_str}")
|
|
raise e from None
|
|
|
|
|
|
def compute_args_hash(*args):
|
|
return md5(str(args).encode()).hexdigest()
|
|
|
|
|
|
def compute_mdhash_id(content, prefix: str = ""):
|
|
return prefix + md5(content.encode()).hexdigest()
|
|
|
|
|
|
def limit_async_func_call(max_size: int, waitting_time: float = 0.0001):
|
|
"""Add restriction of maximum async calling times for a async func"""
|
|
|
|
def final_decro(func):
|
|
"""Not using async.Semaphore to aovid use nest-asyncio"""
|
|
__current_size = 0
|
|
|
|
@wraps(func)
|
|
async def wait_func(*args, **kwargs):
|
|
nonlocal __current_size
|
|
while __current_size >= max_size:
|
|
await asyncio.sleep(waitting_time)
|
|
__current_size += 1
|
|
result = await func(*args, **kwargs)
|
|
__current_size -= 1
|
|
return result
|
|
|
|
return wait_func
|
|
|
|
return final_decro
|
|
|
|
|
|
def wrap_embedding_func_with_attrs(**kwargs):
|
|
"""Wrap a function with attributes"""
|
|
|
|
def final_decro(func) -> EmbeddingFunc:
|
|
new_func = EmbeddingFunc(**kwargs, func=func)
|
|
return new_func
|
|
|
|
return final_decro
|
|
|
|
|
|
def load_json(file_name):
|
|
if not os.path.exists(file_name):
|
|
return None
|
|
with open(file_name, encoding="utf-8") as f:
|
|
return json.load(f)
|
|
|
|
|
|
def write_json(json_obj, file_name):
|
|
with open(file_name, "w", encoding="utf-8") as f:
|
|
json.dump(json_obj, f, indent=2, ensure_ascii=False)
|
|
|
|
|
|
def encode_string_by_tiktoken(content: str, model_name: str = "gpt-4o"):
|
|
global ENCODER
|
|
if ENCODER is None:
|
|
ENCODER = tiktoken.encoding_for_model(model_name)
|
|
tokens = ENCODER.encode(content)
|
|
return tokens
|
|
|
|
|
|
def decode_tokens_by_tiktoken(tokens: list[int], model_name: str = "gpt-4o"):
|
|
global ENCODER
|
|
if ENCODER is None:
|
|
ENCODER = tiktoken.encoding_for_model(model_name)
|
|
content = ENCODER.decode(tokens)
|
|
return content
|
|
|
|
|
|
def pack_user_ass_to_openai_messages(*args: str):
|
|
roles = ["user", "assistant"]
|
|
return [
|
|
{"role": roles[i % 2], "content": content} for i, content in enumerate(args)
|
|
]
|
|
|
|
|
|
def split_string_by_multi_markers(content: str, markers: list[str]) -> list[str]:
|
|
"""Split a string by multiple markers"""
|
|
if not markers:
|
|
return [content]
|
|
results = re.split("|".join(re.escape(marker) for marker in markers), content)
|
|
return [r.strip() for r in results if r.strip()]
|
|
|
|
|
|
# Refer the utils functions of the official GraphRAG implementation:
|
|
# https://github.com/microsoft/graphrag
|
|
def clean_str(input: Any) -> str:
|
|
"""Clean an input string by removing HTML escapes, control characters, and other unwanted characters."""
|
|
# If we get non-string input, just give it back
|
|
if not isinstance(input, str):
|
|
return input
|
|
|
|
result = html.unescape(input.strip())
|
|
# https://stackoverflow.com/questions/4324790/removing-control-characters-from-a-string-in-python
|
|
return re.sub(r"[\x00-\x1f\x7f-\x9f]", "", result)
|
|
|
|
|
|
def is_float_regex(value):
|
|
return bool(re.match(r"^[-+]?[0-9]*\.?[0-9]+$", value))
|
|
|
|
|
|
def truncate_list_by_token_size(list_data: list, key: callable, max_token_size: int):
|
|
"""Truncate a list of data by token size"""
|
|
if max_token_size <= 0:
|
|
return []
|
|
tokens = 0
|
|
for i, data in enumerate(list_data):
|
|
tokens += len(encode_string_by_tiktoken(key(data)))
|
|
if tokens > max_token_size:
|
|
return list_data[:i]
|
|
return list_data
|
|
|
|
|
|
def list_of_list_to_csv(data: List[List[str]]) -> str:
|
|
output = io.StringIO()
|
|
writer = csv.writer(output)
|
|
writer.writerows(data)
|
|
return output.getvalue()
|
|
|
|
|
|
def csv_string_to_list(csv_string: str) -> List[List[str]]:
|
|
output = io.StringIO(csv_string)
|
|
reader = csv.reader(output)
|
|
return [row for row in reader]
|
|
|
|
|
|
def save_data_to_file(data, file_name):
|
|
with open(file_name, "w", encoding="utf-8") as f:
|
|
json.dump(data, f, ensure_ascii=False, indent=4)
|
|
|
|
|
|
def xml_to_json(xml_file):
|
|
try:
|
|
tree = ET.parse(xml_file)
|
|
root = tree.getroot()
|
|
|
|
# Print the root element's tag and attributes to confirm the file has been correctly loaded
|
|
print(f"Root element: {root.tag}")
|
|
print(f"Root attributes: {root.attrib}")
|
|
|
|
data = {"nodes": [], "edges": []}
|
|
|
|
# Use namespace
|
|
namespace = {"": "http://graphml.graphdrawing.org/xmlns"}
|
|
|
|
for node in root.findall(".//node", namespace):
|
|
node_data = {
|
|
"id": node.get("id").strip('"'),
|
|
"entity_type": node.find("./data[@key='d0']", namespace).text.strip('"')
|
|
if node.find("./data[@key='d0']", namespace) is not None
|
|
else "",
|
|
"description": node.find("./data[@key='d1']", namespace).text
|
|
if node.find("./data[@key='d1']", namespace) is not None
|
|
else "",
|
|
"source_id": node.find("./data[@key='d2']", namespace).text
|
|
if node.find("./data[@key='d2']", namespace) is not None
|
|
else "",
|
|
}
|
|
data["nodes"].append(node_data)
|
|
|
|
for edge in root.findall(".//edge", namespace):
|
|
edge_data = {
|
|
"source": edge.get("source").strip('"'),
|
|
"target": edge.get("target").strip('"'),
|
|
"weight": float(edge.find("./data[@key='d3']", namespace).text)
|
|
if edge.find("./data[@key='d3']", namespace) is not None
|
|
else 0.0,
|
|
"description": edge.find("./data[@key='d4']", namespace).text
|
|
if edge.find("./data[@key='d4']", namespace) is not None
|
|
else "",
|
|
"keywords": edge.find("./data[@key='d5']", namespace).text
|
|
if edge.find("./data[@key='d5']", namespace) is not None
|
|
else "",
|
|
"source_id": edge.find("./data[@key='d6']", namespace).text
|
|
if edge.find("./data[@key='d6']", namespace) is not None
|
|
else "",
|
|
}
|
|
data["edges"].append(edge_data)
|
|
|
|
# Print the number of nodes and edges found
|
|
print(f"Found {len(data['nodes'])} nodes and {len(data['edges'])} edges")
|
|
|
|
return data
|
|
except ET.ParseError as e:
|
|
print(f"Error parsing XML file: {e}")
|
|
return None
|
|
except Exception as e:
|
|
print(f"An error occurred: {e}")
|
|
return None
|
|
|
|
|
|
def process_combine_contexts(hl, ll):
|
|
header = None
|
|
list_hl = csv_string_to_list(hl.strip())
|
|
list_ll = csv_string_to_list(ll.strip())
|
|
|
|
if list_hl:
|
|
header = list_hl[0]
|
|
list_hl = list_hl[1:]
|
|
if list_ll:
|
|
header = list_ll[0]
|
|
list_ll = list_ll[1:]
|
|
if header is None:
|
|
return ""
|
|
|
|
if list_hl:
|
|
list_hl = [",".join(item[1:]) for item in list_hl if item]
|
|
if list_ll:
|
|
list_ll = [",".join(item[1:]) for item in list_ll if item]
|
|
|
|
combined_sources = []
|
|
seen = set()
|
|
|
|
for item in list_hl + list_ll:
|
|
if item and item not in seen:
|
|
combined_sources.append(item)
|
|
seen.add(item)
|
|
|
|
combined_sources_result = [",\t".join(header)]
|
|
|
|
for i, item in enumerate(combined_sources, start=1):
|
|
combined_sources_result.append(f"{i},\t{item}")
|
|
|
|
combined_sources_result = "\n".join(combined_sources_result)
|
|
|
|
return combined_sources_result
|
|
|
|
|
|
async def get_best_cached_response(
|
|
hashing_kv,
|
|
current_embedding,
|
|
similarity_threshold=0.95,
|
|
mode="default",
|
|
use_llm_check=False,
|
|
llm_func=None,
|
|
original_prompt=None,
|
|
) -> Union[str, None]:
|
|
# Get mode-specific cache
|
|
mode_cache = await hashing_kv.get_by_id(mode)
|
|
if not mode_cache:
|
|
return None
|
|
|
|
best_similarity = -1
|
|
best_response = None
|
|
best_prompt = None
|
|
best_cache_id = None
|
|
|
|
# Only iterate through cache entries for this mode
|
|
for cache_id, cache_data in mode_cache.items():
|
|
if cache_data["embedding"] is None:
|
|
continue
|
|
|
|
# Convert cached embedding list to ndarray
|
|
cached_quantized = np.frombuffer(
|
|
bytes.fromhex(cache_data["embedding"]), dtype=np.uint8
|
|
).reshape(cache_data["embedding_shape"])
|
|
cached_embedding = dequantize_embedding(
|
|
cached_quantized,
|
|
cache_data["embedding_min"],
|
|
cache_data["embedding_max"],
|
|
)
|
|
|
|
similarity = cosine_similarity(current_embedding, cached_embedding)
|
|
if similarity > best_similarity:
|
|
best_similarity = similarity
|
|
best_response = cache_data["return"]
|
|
best_prompt = cache_data["original_prompt"]
|
|
best_cache_id = cache_id
|
|
|
|
if best_similarity > similarity_threshold:
|
|
# If LLM check is enabled and all required parameters are provided
|
|
if use_llm_check and llm_func and original_prompt and best_prompt:
|
|
compare_prompt = PROMPTS["similarity_check"].format(
|
|
original_prompt=original_prompt, cached_prompt=best_prompt
|
|
)
|
|
|
|
try:
|
|
llm_result = await llm_func(compare_prompt)
|
|
llm_result = llm_result.strip()
|
|
llm_similarity = float(llm_result)
|
|
|
|
# Replace vector similarity with LLM similarity score
|
|
best_similarity = llm_similarity
|
|
if best_similarity < similarity_threshold:
|
|
log_data = {
|
|
"event": "llm_check_cache_rejected",
|
|
"original_question": original_prompt[:100] + "..."
|
|
if len(original_prompt) > 100
|
|
else original_prompt,
|
|
"cached_question": best_prompt[:100] + "..."
|
|
if len(best_prompt) > 100
|
|
else best_prompt,
|
|
"similarity_score": round(best_similarity, 4),
|
|
"threshold": similarity_threshold,
|
|
}
|
|
logger.info(json.dumps(log_data, ensure_ascii=False))
|
|
return None
|
|
except Exception as e: # Catch all possible exceptions
|
|
logger.warning(f"LLM similarity check failed: {e}")
|
|
return None # Return None directly when LLM check fails
|
|
|
|
prompt_display = (
|
|
best_prompt[:50] + "..." if len(best_prompt) > 50 else best_prompt
|
|
)
|
|
log_data = {
|
|
"event": "cache_hit",
|
|
"mode": mode,
|
|
"similarity": round(best_similarity, 4),
|
|
"cache_id": best_cache_id,
|
|
"original_prompt": prompt_display,
|
|
}
|
|
logger.info(json.dumps(log_data, ensure_ascii=False))
|
|
return best_response
|
|
return None
|
|
|
|
|
|
def cosine_similarity(v1, v2):
|
|
"""Calculate cosine similarity between two vectors"""
|
|
dot_product = np.dot(v1, v2)
|
|
norm1 = np.linalg.norm(v1)
|
|
norm2 = np.linalg.norm(v2)
|
|
return dot_product / (norm1 * norm2)
|
|
|
|
|
|
def quantize_embedding(embedding: np.ndarray, bits=8) -> tuple:
|
|
"""Quantize embedding to specified bits"""
|
|
# Calculate min/max values for reconstruction
|
|
min_val = embedding.min()
|
|
max_val = embedding.max()
|
|
|
|
# Quantize to 0-255 range
|
|
scale = (2**bits - 1) / (max_val - min_val)
|
|
quantized = np.round((embedding - min_val) * scale).astype(np.uint8)
|
|
|
|
return quantized, min_val, max_val
|
|
|
|
|
|
def dequantize_embedding(
|
|
quantized: np.ndarray, min_val: float, max_val: float, bits=8
|
|
) -> np.ndarray:
|
|
"""Restore quantized embedding"""
|
|
scale = (max_val - min_val) / (2**bits - 1)
|
|
return (quantized * scale + min_val).astype(np.float32)
|
|
|
|
|
|
async def handle_cache(hashing_kv, args_hash, prompt, mode="default"):
|
|
"""Generic cache handling function"""
|
|
if hashing_kv is None or not hashing_kv.global_config.get("enable_llm_cache"):
|
|
return None, None, None, None
|
|
|
|
# For naive mode, only use simple cache matching
|
|
if mode == "naive":
|
|
if exists_func(hashing_kv, "get_by_mode_and_id"):
|
|
mode_cache = await hashing_kv.get_by_mode_and_id(mode, args_hash) or {}
|
|
else:
|
|
mode_cache = await hashing_kv.get_by_id(mode) or {}
|
|
if args_hash in mode_cache:
|
|
return mode_cache[args_hash]["return"], None, None, None
|
|
return None, None, None, None
|
|
|
|
# Get embedding cache configuration
|
|
embedding_cache_config = hashing_kv.global_config.get(
|
|
"embedding_cache_config",
|
|
{"enabled": False, "similarity_threshold": 0.95, "use_llm_check": False},
|
|
)
|
|
is_embedding_cache_enabled = embedding_cache_config["enabled"]
|
|
use_llm_check = embedding_cache_config.get("use_llm_check", False)
|
|
|
|
quantized = min_val = max_val = None
|
|
if is_embedding_cache_enabled:
|
|
# Use embedding cache
|
|
embedding_model_func = hashing_kv.global_config["embedding_func"]["func"]
|
|
llm_model_func = hashing_kv.global_config.get("llm_model_func")
|
|
|
|
current_embedding = await embedding_model_func([prompt])
|
|
quantized, min_val, max_val = quantize_embedding(current_embedding[0])
|
|
best_cached_response = await get_best_cached_response(
|
|
hashing_kv,
|
|
current_embedding[0],
|
|
similarity_threshold=embedding_cache_config["similarity_threshold"],
|
|
mode=mode,
|
|
use_llm_check=use_llm_check,
|
|
llm_func=llm_model_func if use_llm_check else None,
|
|
original_prompt=prompt if use_llm_check else None,
|
|
)
|
|
if best_cached_response is not None:
|
|
return best_cached_response, None, None, None
|
|
else:
|
|
# Use regular cache
|
|
if exists_func(hashing_kv, "get_by_mode_and_id"):
|
|
mode_cache = await hashing_kv.get_by_mode_and_id(mode, args_hash) or {}
|
|
else:
|
|
mode_cache = await hashing_kv.get_by_id(mode) or {}
|
|
if args_hash in mode_cache:
|
|
return mode_cache[args_hash]["return"], None, None, None
|
|
|
|
return None, quantized, min_val, max_val
|
|
|
|
|
|
@dataclass
|
|
class CacheData:
|
|
args_hash: str
|
|
content: str
|
|
prompt: str
|
|
quantized: Optional[np.ndarray] = None
|
|
min_val: Optional[float] = None
|
|
max_val: Optional[float] = None
|
|
mode: str = "default"
|
|
|
|
|
|
async def save_to_cache(hashing_kv, cache_data: CacheData):
|
|
if hashing_kv is None or hasattr(cache_data.content, "__aiter__"):
|
|
return
|
|
|
|
if exists_func(hashing_kv, "get_by_mode_and_id"):
|
|
mode_cache = (
|
|
await hashing_kv.get_by_mode_and_id(cache_data.mode, cache_data.args_hash)
|
|
or {}
|
|
)
|
|
else:
|
|
mode_cache = await hashing_kv.get_by_id(cache_data.mode) or {}
|
|
|
|
mode_cache[cache_data.args_hash] = {
|
|
"return": cache_data.content,
|
|
"embedding": cache_data.quantized.tobytes().hex()
|
|
if cache_data.quantized is not None
|
|
else None,
|
|
"embedding_shape": cache_data.quantized.shape
|
|
if cache_data.quantized is not None
|
|
else None,
|
|
"embedding_min": cache_data.min_val,
|
|
"embedding_max": cache_data.max_val,
|
|
"original_prompt": cache_data.prompt,
|
|
}
|
|
|
|
await hashing_kv.upsert({cache_data.mode: mode_cache})
|
|
|
|
|
|
def safe_unicode_decode(content):
|
|
# Regular expression to find all Unicode escape sequences of the form \uXXXX
|
|
unicode_escape_pattern = re.compile(r"\\u([0-9a-fA-F]{4})")
|
|
|
|
# Function to replace the Unicode escape with the actual character
|
|
def replace_unicode_escape(match):
|
|
# Convert the matched hexadecimal value into the actual Unicode character
|
|
return chr(int(match.group(1), 16))
|
|
|
|
# Perform the substitution
|
|
decoded_content = unicode_escape_pattern.sub(
|
|
replace_unicode_escape, content.decode("utf-8")
|
|
)
|
|
|
|
return decoded_content
|
|
|
|
|
|
def exists_func(obj, func_name: str) -> bool:
|
|
"""Check if a function exists in an object or not.
|
|
:param obj:
|
|
:param func_name:
|
|
:return: True / False
|
|
"""
|
|
if callable(getattr(obj, func_name, None)):
|
|
return True
|
|
else:
|
|
return False
|