LightRAG/examples/lightrag_nvidia_demo.py
2025-03-04 12:25:07 +08:00

173 lines
5.0 KiB
Python

import os
import asyncio
import nest_asyncio
nest_asyncio.apply()
from lightrag import LightRAG, QueryParam
from lightrag.llm import (
openai_complete_if_cache,
nvidia_openai_embed,
)
from lightrag.utils import EmbeddingFunc
import numpy as np
from lightrag.kg.shared_storage import initialize_pipeline_status
# for custom llm_model_func
from lightrag.utils import locate_json_string_body_from_string
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
# some method to use your API key (choose one)
# NVIDIA_OPENAI_API_KEY = os.getenv("NVIDIA_OPENAI_API_KEY")
NVIDIA_OPENAI_API_KEY = "nvapi-xxxx" # your api key
# using pre-defined function for nvidia LLM API. OpenAI compatible
# llm_model_func = nvidia_openai_complete
# If you trying to make custom llm_model_func to use llm model on NVIDIA API like other example:
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
result = await openai_complete_if_cache(
"nvidia/llama-3.1-nemotron-70b-instruct",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=NVIDIA_OPENAI_API_KEY,
base_url="https://integrate.api.nvidia.com/v1",
**kwargs,
)
if keyword_extraction:
return locate_json_string_body_from_string(result)
return result
# custom embedding
nvidia_embed_model = "nvidia/nv-embedqa-e5-v5"
async def indexing_embedding_func(texts: list[str]) -> np.ndarray:
return await nvidia_openai_embed(
texts,
model=nvidia_embed_model, # maximum 512 token
# model="nvidia/llama-3.2-nv-embedqa-1b-v1",
api_key=NVIDIA_OPENAI_API_KEY,
base_url="https://integrate.api.nvidia.com/v1",
input_type="passage",
trunc="END", # handling on server side if input token is longer than maximum token
encode="float",
)
async def query_embedding_func(texts: list[str]) -> np.ndarray:
return await nvidia_openai_embed(
texts,
model=nvidia_embed_model, # maximum 512 token
# model="nvidia/llama-3.2-nv-embedqa-1b-v1",
api_key=NVIDIA_OPENAI_API_KEY,
base_url="https://integrate.api.nvidia.com/v1",
input_type="query",
trunc="END", # handling on server side if input token is longer than maximum token
encode="float",
)
# dimension are same
async def get_embedding_dim():
test_text = ["This is a test sentence."]
embedding = await indexing_embedding_func(test_text)
embedding_dim = embedding.shape[1]
return embedding_dim
# function test
async def test_funcs():
result = await llm_model_func("How are you?")
print("llm_model_func: ", result)
result = await indexing_embedding_func(["How are you?"])
print("embedding_func: ", result)
# asyncio.run(test_funcs())
async def initialize_rag():
embedding_dimension = await get_embedding_dim()
print(f"Detected embedding dimension: {embedding_dimension}")
# lightRAG class during indexing
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
# llm_model_name="meta/llama3-70b-instruct", #un comment if
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=512, # maximum token size, somehow it's still exceed maximum number of token
# so truncate (trunc) parameter on embedding_func will handle it and try to examine the tokenizer used in LightRAG
# so you can adjust to be able to fit the NVIDIA model (future work)
func=indexing_embedding_func,
),
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
async def main():
try:
# Initialize RAG instance
rag = await initialize_rag()
# reading file
with open("./book.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())
# Perform naive search
print("==============Naive===============")
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
)
# Perform local search
print("==============local===============")
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
)
# Perform global search
print("==============global===============")
print(
await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="global"),
)
)
# Perform hybrid search
print("==============hybrid===============")
print(
await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="hybrid"),
)
)
except Exception as e:
print(f"An error occurred: {e}")
if __name__ == "__main__":
asyncio.run(main())