mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
113 lines
2.9 KiB
Python
113 lines
2.9 KiB
Python
import asyncio
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.llm import siliconcloud_embedding, openai_complete_if_cache
|
|
from lightrag.utils import EmbeddingFunc
|
|
from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
|
|
WORKING_DIR = "./dickens"
|
|
|
|
# We use SiliconCloud API to call LLM on Oracle Cloud
|
|
# More docs here https://docs.siliconflow.cn/introduction
|
|
BASE_URL = "https://api.siliconflow.cn/v1/"
|
|
APIKEY = ""
|
|
CHATMODEL = ""
|
|
EMBEDMODEL = ""
|
|
|
|
os.environ["TIDB_HOST"] = ""
|
|
os.environ["TIDB_PORT"] = ""
|
|
os.environ["TIDB_USER"] = ""
|
|
os.environ["TIDB_PASSWORD"] = ""
|
|
os.environ["TIDB_DATABASE"] = "lightrag"
|
|
|
|
if not os.path.exists(WORKING_DIR):
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
|
|
async def llm_model_func(
|
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
|
) -> str:
|
|
return await openai_complete_if_cache(
|
|
CHATMODEL,
|
|
prompt,
|
|
system_prompt=system_prompt,
|
|
history_messages=history_messages,
|
|
api_key=APIKEY,
|
|
base_url=BASE_URL,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
|
return await siliconcloud_embedding(
|
|
texts,
|
|
# model=EMBEDMODEL,
|
|
api_key=APIKEY,
|
|
)
|
|
|
|
|
|
async def get_embedding_dim():
|
|
test_text = ["This is a test sentence."]
|
|
embedding = await embedding_func(test_text)
|
|
embedding_dim = embedding.shape[1]
|
|
return embedding_dim
|
|
|
|
|
|
async def initialize_rag():
|
|
# Detect embedding dimension
|
|
embedding_dimension = await get_embedding_dim()
|
|
print(f"Detected embedding dimension: {embedding_dimension}")
|
|
|
|
# Initialize LightRAG
|
|
# We use TiDB DB as the KV/vector
|
|
rag = LightRAG(
|
|
enable_llm_cache=False,
|
|
working_dir=WORKING_DIR,
|
|
chunk_token_size=512,
|
|
llm_model_func=llm_model_func,
|
|
embedding_func=EmbeddingFunc(
|
|
embedding_dim=embedding_dimension,
|
|
max_token_size=512,
|
|
func=embedding_func,
|
|
),
|
|
kv_storage="TiDBKVStorage",
|
|
vector_storage="TiDBVectorDBStorage",
|
|
graph_storage="TiDBGraphStorage",
|
|
)
|
|
|
|
await rag.initialize_storages()
|
|
await initialize_pipeline_status()
|
|
|
|
return rag
|
|
|
|
|
|
async def main():
|
|
try:
|
|
# Initialize RAG instance
|
|
rag = await initialize_rag()
|
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f:
|
|
rag.insert(f.read())
|
|
|
|
# Perform search in different modes
|
|
modes = ["naive", "local", "global", "hybrid"]
|
|
for mode in modes:
|
|
print("=" * 20, mode, "=" * 20)
|
|
print(
|
|
await rag.aquery(
|
|
"What are the top themes in this story?",
|
|
param=QueryParam(mode=mode),
|
|
)
|
|
)
|
|
print("-" * 100, "\n")
|
|
|
|
except Exception as e:
|
|
print(f"An error occurred: {e}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main())
|