LightRAG/examples/lightrag_zhipu_postgres_demo.py
2025-03-04 12:25:07 +08:00

110 lines
3.2 KiB
Python

import asyncio
import logging
import os
import time
from dotenv import load_dotenv
from lightrag import LightRAG, QueryParam
from lightrag.llm.zhipu import zhipu_complete
from lightrag.llm.ollama import ollama_embedding
from lightrag.utils import EmbeddingFunc
from lightrag.kg.shared_storage import initialize_pipeline_status
load_dotenv()
ROOT_DIR = os.environ.get("ROOT_DIR")
WORKING_DIR = f"{ROOT_DIR}/dickens-pg"
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
# AGE
os.environ["AGE_GRAPH_NAME"] = "dickens"
os.environ["POSTGRES_HOST"] = "localhost"
os.environ["POSTGRES_PORT"] = "15432"
os.environ["POSTGRES_USER"] = "rag"
os.environ["POSTGRES_PASSWORD"] = "rag"
os.environ["POSTGRES_DATABASE"] = "rag"
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=zhipu_complete,
llm_model_name="glm-4-flashx",
llm_model_max_async=4,
llm_model_max_token_size=32768,
enable_llm_cache_for_entity_extract=True,
embedding_func=EmbeddingFunc(
embedding_dim=1024,
max_token_size=8192,
func=lambda texts: ollama_embedding(
texts, embed_model="bge-m3", host="http://localhost:11434"
),
),
kv_storage="PGKVStorage",
doc_status_storage="PGDocStatusStorage",
graph_storage="PGGraphStorage",
vector_storage="PGVectorStorage",
auto_manage_storages_states=False,
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
async def main():
# Initialize RAG instance
rag = await initialize_rag()
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
with open(f"{ROOT_DIR}/book.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())
print("==== Trying to test the rag queries ====")
print("**** Start Naive Query ****")
start_time = time.time()
# Perform naive search
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
)
print(f"Naive Query Time: {time.time() - start_time} seconds")
# Perform local search
print("**** Start Local Query ****")
start_time = time.time()
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
)
print(f"Local Query Time: {time.time() - start_time} seconds")
# Perform global search
print("**** Start Global Query ****")
start_time = time.time()
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="global")
)
)
print(f"Global Query Time: {time.time() - start_time}")
# Perform hybrid search
print("**** Start Hybrid Query ****")
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
)
)
print(f"Hybrid Query Time: {time.time() - start_time} seconds")
if __name__ == "__main__":
asyncio.run(main())