mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-22 08:21:27 +00:00
42 lines
1.0 KiB
Python
42 lines
1.0 KiB
Python
"""
|
|
LightRAG meets Amazon Bedrock ⛰️
|
|
"""
|
|
|
|
import os
|
|
import logging
|
|
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.llm import bedrock_complete, bedrock_embedding
|
|
from lightrag.utils import EmbeddingFunc
|
|
|
|
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
|
|
|
|
WORKING_DIR = "./dickens"
|
|
if not os.path.exists(WORKING_DIR):
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
rag = LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
llm_model_func=bedrock_complete,
|
|
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
|
|
embedding_func=EmbeddingFunc(
|
|
embedding_dim=1024,
|
|
max_token_size=8192,
|
|
func=bedrock_embedding
|
|
)
|
|
)
|
|
|
|
with open("./book.txt", 'r', encoding='utf-8') as f:
|
|
rag.insert(f.read())
|
|
|
|
for mode in ["naive", "local", "global", "hybrid"]:
|
|
print("\n+-" + "-" * len(mode) + "-+")
|
|
print(f"| {mode.capitalize()} |")
|
|
print("+-" + "-" * len(mode) + "-+\n")
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?",
|
|
param=QueryParam(mode=mode)
|
|
)
|
|
)
|