mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
689 lines
24 KiB
Python
689 lines
24 KiB
Python
from __future__ import annotations
|
||
|
||
from abc import ABC, abstractmethod
|
||
from enum import Enum
|
||
import os
|
||
from dotenv import load_dotenv
|
||
from dataclasses import dataclass, field
|
||
from typing import (
|
||
Any,
|
||
Literal,
|
||
TypedDict,
|
||
TypeVar,
|
||
Callable,
|
||
)
|
||
from .utils import EmbeddingFunc
|
||
from .types import KnowledgeGraph
|
||
from .constants import GRAPH_FIELD_SEP
|
||
|
||
# use the .env that is inside the current folder
|
||
# allows to use different .env file for each lightrag instance
|
||
# the OS environment variables take precedence over the .env file
|
||
load_dotenv(dotenv_path=".env", override=False)
|
||
|
||
|
||
class TextChunkSchema(TypedDict):
|
||
tokens: int
|
||
content: str
|
||
full_doc_id: str
|
||
chunk_order_index: int
|
||
|
||
|
||
T = TypeVar("T")
|
||
|
||
|
||
@dataclass
|
||
class QueryParam:
|
||
"""Configuration parameters for query execution in LightRAG."""
|
||
|
||
mode: Literal["local", "global", "hybrid", "naive", "mix", "bypass"] = "global"
|
||
"""Specifies the retrieval mode:
|
||
- "local": Focuses on context-dependent information.
|
||
- "global": Utilizes global knowledge.
|
||
- "hybrid": Combines local and global retrieval methods.
|
||
- "naive": Performs a basic search without advanced techniques.
|
||
- "mix": Integrates knowledge graph and vector retrieval.
|
||
"""
|
||
|
||
only_need_context: bool = False
|
||
"""If True, only returns the retrieved context without generating a response."""
|
||
|
||
only_need_prompt: bool = False
|
||
"""If True, only returns the generated prompt without producing a response."""
|
||
|
||
response_type: str = "Multiple Paragraphs"
|
||
"""Defines the response format. Examples: 'Multiple Paragraphs', 'Single Paragraph', 'Bullet Points'."""
|
||
|
||
stream: bool = False
|
||
"""If True, enables streaming output for real-time responses."""
|
||
|
||
top_k: int = int(os.getenv("TOP_K", "60"))
|
||
"""Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode."""
|
||
|
||
max_token_for_text_unit: int = int(os.getenv("MAX_TOKEN_TEXT_CHUNK", "4000"))
|
||
"""Maximum number of tokens allowed for each retrieved text chunk."""
|
||
|
||
max_token_for_global_context: int = int(
|
||
os.getenv("MAX_TOKEN_RELATION_DESC", "4000")
|
||
)
|
||
"""Maximum number of tokens allocated for relationship descriptions in global retrieval."""
|
||
|
||
max_token_for_local_context: int = int(os.getenv("MAX_TOKEN_ENTITY_DESC", "4000"))
|
||
"""Maximum number of tokens allocated for entity descriptions in local retrieval."""
|
||
|
||
hl_keywords: list[str] = field(default_factory=list)
|
||
"""List of high-level keywords to prioritize in retrieval."""
|
||
|
||
ll_keywords: list[str] = field(default_factory=list)
|
||
"""List of low-level keywords to refine retrieval focus."""
|
||
|
||
conversation_history: list[dict[str, str]] = field(default_factory=list)
|
||
"""Stores past conversation history to maintain context.
|
||
Format: [{"role": "user/assistant", "content": "message"}].
|
||
"""
|
||
|
||
history_turns: int = 3
|
||
"""Number of complete conversation turns (user-assistant pairs) to consider in the response context."""
|
||
|
||
ids: list[str] | None = None
|
||
"""List of ids to filter the results."""
|
||
|
||
model_func: Callable[..., object] | None = None
|
||
"""Optional override for the LLM model function to use for this specific query.
|
||
If provided, this will be used instead of the global model function.
|
||
This allows using different models for different query modes.
|
||
"""
|
||
|
||
user_prompt: str | None = None
|
||
"""User-provided prompt for the query.
|
||
If proivded, this will be use instead of the default vaulue from prompt template.
|
||
"""
|
||
|
||
|
||
@dataclass
|
||
class StorageNameSpace(ABC):
|
||
namespace: str
|
||
global_config: dict[str, Any]
|
||
|
||
async def initialize(self):
|
||
"""Initialize the storage"""
|
||
pass
|
||
|
||
async def finalize(self):
|
||
"""Finalize the storage"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
async def index_done_callback(self) -> None:
|
||
"""Commit the storage operations after indexing"""
|
||
|
||
@abstractmethod
|
||
async def drop(self) -> dict[str, str]:
|
||
"""Drop all data from storage and clean up resources
|
||
|
||
This abstract method defines the contract for dropping all data from a storage implementation.
|
||
Each storage type must implement this method to:
|
||
1. Clear all data from memory and/or external storage
|
||
2. Remove any associated storage files if applicable
|
||
3. Reset the storage to its initial state
|
||
4. Handle cleanup of any resources
|
||
5. Notify other processes if necessary
|
||
6. This action should persistent the data to disk immediately.
|
||
|
||
Returns:
|
||
dict[str, str]: Operation status and message with the following format:
|
||
{
|
||
"status": str, # "success" or "error"
|
||
"message": str # "data dropped" on success, error details on failure
|
||
}
|
||
|
||
Implementation specific:
|
||
- On success: return {"status": "success", "message": "data dropped"}
|
||
- On failure: return {"status": "error", "message": "<error details>"}
|
||
- If not supported: return {"status": "error", "message": "unsupported"}
|
||
"""
|
||
|
||
|
||
@dataclass
|
||
class BaseVectorStorage(StorageNameSpace, ABC):
|
||
embedding_func: EmbeddingFunc
|
||
cosine_better_than_threshold: float = field(default=0.2)
|
||
meta_fields: set[str] = field(default_factory=set)
|
||
|
||
@abstractmethod
|
||
async def query(
|
||
self, query: str, top_k: int, ids: list[str] | None = None
|
||
) -> list[dict[str, Any]]:
|
||
"""Query the vector storage and retrieve top_k results."""
|
||
|
||
@abstractmethod
|
||
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
||
"""Insert or update vectors in the storage.
|
||
|
||
Importance notes for in-memory storage:
|
||
1. Changes will be persisted to disk during the next index_done_callback
|
||
2. Only one process should updating the storage at a time before index_done_callback,
|
||
KG-storage-log should be used to avoid data corruption
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def delete_entity(self, entity_name: str) -> None:
|
||
"""Delete a single entity by its name.
|
||
|
||
Importance notes for in-memory storage:
|
||
1. Changes will be persisted to disk during the next index_done_callback
|
||
2. Only one process should updating the storage at a time before index_done_callback,
|
||
KG-storage-log should be used to avoid data corruption
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def delete_entity_relation(self, entity_name: str) -> None:
|
||
"""Delete relations for a given entity.
|
||
|
||
Importance notes for in-memory storage:
|
||
1. Changes will be persisted to disk during the next index_done_callback
|
||
2. Only one process should updating the storage at a time before index_done_callback,
|
||
KG-storage-log should be used to avoid data corruption
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||
"""Get vector data by its ID
|
||
|
||
Args:
|
||
id: The unique identifier of the vector
|
||
|
||
Returns:
|
||
The vector data if found, or None if not found
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
||
"""Get multiple vector data by their IDs
|
||
|
||
Args:
|
||
ids: List of unique identifiers
|
||
|
||
Returns:
|
||
List of vector data objects that were found
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
async def delete(self, ids: list[str]):
|
||
"""Delete vectors with specified IDs
|
||
|
||
Importance notes for in-memory storage:
|
||
1. Changes will be persisted to disk during the next index_done_callback
|
||
2. Only one process should updating the storage at a time before index_done_callback,
|
||
KG-storage-log should be used to avoid data corruption
|
||
|
||
Args:
|
||
ids: List of vector IDs to be deleted
|
||
"""
|
||
|
||
|
||
@dataclass
|
||
class BaseKVStorage(StorageNameSpace, ABC):
|
||
embedding_func: EmbeddingFunc
|
||
|
||
@abstractmethod
|
||
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
||
"""Get value by id"""
|
||
|
||
@abstractmethod
|
||
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
||
"""Get values by ids"""
|
||
|
||
@abstractmethod
|
||
async def filter_keys(self, keys: set[str]) -> set[str]:
|
||
"""Return un-exist keys"""
|
||
|
||
@abstractmethod
|
||
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
|
||
"""Upsert data
|
||
|
||
Importance notes for in-memory storage:
|
||
1. Changes will be persisted to disk during the next index_done_callback
|
||
2. update flags to notify other processes that data persistence is needed
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def delete(self, ids: list[str]) -> None:
|
||
"""Delete specific records from storage by their IDs
|
||
|
||
Importance notes for in-memory storage:
|
||
1. Changes will be persisted to disk during the next index_done_callback
|
||
2. update flags to notify other processes that data persistence is needed
|
||
|
||
Args:
|
||
ids (list[str]): List of document IDs to be deleted from storage
|
||
|
||
Returns:
|
||
None
|
||
"""
|
||
|
||
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
||
"""Delete specific records from storage by cache mode
|
||
|
||
Importance notes for in-memory storage:
|
||
1. Changes will be persisted to disk during the next index_done_callback
|
||
2. update flags to notify other processes that data persistence is needed
|
||
|
||
Args:
|
||
modes (list[str]): List of cache modes to be dropped from storage
|
||
|
||
Returns:
|
||
True: if the cache drop successfully
|
||
False: if the cache drop failed, or the cache mode is not supported
|
||
"""
|
||
|
||
# async def drop_cache_by_chunk_ids(self, chunk_ids: list[str] | None = None) -> bool:
|
||
# """Delete specific cache records from storage by chunk IDs
|
||
|
||
# Importance notes for in-memory storage:
|
||
# 1. Changes will be persisted to disk during the next index_done_callback
|
||
# 2. update flags to notify other processes that data persistence is needed
|
||
|
||
# Args:
|
||
# chunk_ids (list[str]): List of chunk IDs to be dropped from storage
|
||
|
||
# Returns:
|
||
# True: if the cache drop successfully
|
||
# False: if the cache drop failed, or the operation is not supported
|
||
# """
|
||
|
||
|
||
@dataclass
|
||
class BaseGraphStorage(StorageNameSpace, ABC):
|
||
embedding_func: EmbeddingFunc
|
||
|
||
@abstractmethod
|
||
async def has_node(self, node_id: str) -> bool:
|
||
"""Check if a node exists in the graph.
|
||
|
||
Args:
|
||
node_id: The ID of the node to check
|
||
|
||
Returns:
|
||
True if the node exists, False otherwise
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
||
"""Check if an edge exists between two nodes.
|
||
|
||
Args:
|
||
source_node_id: The ID of the source node
|
||
target_node_id: The ID of the target node
|
||
|
||
Returns:
|
||
True if the edge exists, False otherwise
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def node_degree(self, node_id: str) -> int:
|
||
"""Get the degree (number of connected edges) of a node.
|
||
|
||
Args:
|
||
node_id: The ID of the node
|
||
|
||
Returns:
|
||
The number of edges connected to the node
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
||
"""Get the total degree of an edge (sum of degrees of its source and target nodes).
|
||
|
||
Args:
|
||
src_id: The ID of the source node
|
||
tgt_id: The ID of the target node
|
||
|
||
Returns:
|
||
The sum of the degrees of the source and target nodes
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def get_node(self, node_id: str) -> dict[str, str] | None:
|
||
"""Get node by its ID, returning only node properties.
|
||
|
||
Args:
|
||
node_id: The ID of the node to retrieve
|
||
|
||
Returns:
|
||
A dictionary of node properties if found, None otherwise
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def get_edge(
|
||
self, source_node_id: str, target_node_id: str
|
||
) -> dict[str, str] | None:
|
||
"""Get edge properties between two nodes.
|
||
|
||
Args:
|
||
source_node_id: The ID of the source node
|
||
target_node_id: The ID of the target node
|
||
|
||
Returns:
|
||
A dictionary of edge properties if found, None otherwise
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
|
||
"""Get all edges connected to a node.
|
||
|
||
Args:
|
||
source_node_id: The ID of the node to get edges for
|
||
|
||
Returns:
|
||
A list of (source_id, target_id) tuples representing edges,
|
||
or None if the node doesn't exist
|
||
"""
|
||
|
||
async def get_nodes_batch(self, node_ids: list[str]) -> dict[str, dict]:
|
||
"""Get nodes as a batch using UNWIND
|
||
|
||
Default implementation fetches nodes one by one.
|
||
Override this method for better performance in storage backends
|
||
that support batch operations.
|
||
"""
|
||
result = {}
|
||
for node_id in node_ids:
|
||
node = await self.get_node(node_id)
|
||
if node is not None:
|
||
result[node_id] = node
|
||
return result
|
||
|
||
async def node_degrees_batch(self, node_ids: list[str]) -> dict[str, int]:
|
||
"""Node degrees as a batch using UNWIND
|
||
|
||
Default implementation fetches node degrees one by one.
|
||
Override this method for better performance in storage backends
|
||
that support batch operations.
|
||
"""
|
||
result = {}
|
||
for node_id in node_ids:
|
||
degree = await self.node_degree(node_id)
|
||
result[node_id] = degree
|
||
return result
|
||
|
||
async def edge_degrees_batch(
|
||
self, edge_pairs: list[tuple[str, str]]
|
||
) -> dict[tuple[str, str], int]:
|
||
"""Edge degrees as a batch using UNWIND also uses node_degrees_batch
|
||
|
||
Default implementation calculates edge degrees one by one.
|
||
Override this method for better performance in storage backends
|
||
that support batch operations.
|
||
"""
|
||
result = {}
|
||
for src_id, tgt_id in edge_pairs:
|
||
degree = await self.edge_degree(src_id, tgt_id)
|
||
result[(src_id, tgt_id)] = degree
|
||
return result
|
||
|
||
async def get_edges_batch(
|
||
self, pairs: list[dict[str, str]]
|
||
) -> dict[tuple[str, str], dict]:
|
||
"""Get edges as a batch using UNWIND
|
||
|
||
Default implementation fetches edges one by one.
|
||
Override this method for better performance in storage backends
|
||
that support batch operations.
|
||
"""
|
||
result = {}
|
||
for pair in pairs:
|
||
src_id = pair["src"]
|
||
tgt_id = pair["tgt"]
|
||
edge = await self.get_edge(src_id, tgt_id)
|
||
if edge is not None:
|
||
result[(src_id, tgt_id)] = edge
|
||
return result
|
||
|
||
async def get_nodes_edges_batch(
|
||
self, node_ids: list[str]
|
||
) -> dict[str, list[tuple[str, str]]]:
|
||
"""Get nodes edges as a batch using UNWIND
|
||
|
||
Default implementation fetches node edges one by one.
|
||
Override this method for better performance in storage backends
|
||
that support batch operations.
|
||
"""
|
||
result = {}
|
||
for node_id in node_ids:
|
||
edges = await self.get_node_edges(node_id)
|
||
result[node_id] = edges if edges is not None else []
|
||
return result
|
||
|
||
@abstractmethod
|
||
async def get_nodes_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
|
||
"""Get all nodes that are associated with the given chunk_ids.
|
||
|
||
Args:
|
||
chunk_ids (list[str]): A list of chunk IDs to find associated nodes for.
|
||
|
||
Returns:
|
||
list[dict]: A list of nodes, where each node is a dictionary of its properties.
|
||
An empty list if no matching nodes are found.
|
||
"""
|
||
# Default implementation iterates through all nodes, which is inefficient.
|
||
# This method should be overridden by subclasses for better performance.
|
||
all_nodes = []
|
||
all_labels = await self.get_all_labels()
|
||
for label in all_labels:
|
||
node = await self.get_node(label)
|
||
if node and "source_id" in node:
|
||
source_ids = set(node["source_id"].split(GRAPH_FIELD_SEP))
|
||
if not source_ids.isdisjoint(chunk_ids):
|
||
all_nodes.append(node)
|
||
return all_nodes
|
||
|
||
@abstractmethod
|
||
async def get_edges_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
|
||
"""Get all edges that are associated with the given chunk_ids.
|
||
|
||
Args:
|
||
chunk_ids (list[str]): A list of chunk IDs to find associated edges for.
|
||
|
||
Returns:
|
||
list[dict]: A list of edges, where each edge is a dictionary of its properties.
|
||
An empty list if no matching edges are found.
|
||
"""
|
||
# Default implementation iterates through all nodes and their edges, which is inefficient.
|
||
# This method should be overridden by subclasses for better performance.
|
||
all_edges = []
|
||
all_labels = await self.get_all_labels()
|
||
processed_edges = set()
|
||
|
||
for label in all_labels:
|
||
edges = await self.get_node_edges(label)
|
||
if edges:
|
||
for src_id, tgt_id in edges:
|
||
# Avoid processing the same edge twice in an undirected graph
|
||
edge_tuple = tuple(sorted((src_id, tgt_id)))
|
||
if edge_tuple in processed_edges:
|
||
continue
|
||
processed_edges.add(edge_tuple)
|
||
|
||
edge = await self.get_edge(src_id, tgt_id)
|
||
if edge and "source_id" in edge:
|
||
source_ids = set(edge["source_id"].split(GRAPH_FIELD_SEP))
|
||
if not source_ids.isdisjoint(chunk_ids):
|
||
# Add source and target to the edge dict for easier processing later
|
||
edge_with_nodes = edge.copy()
|
||
edge_with_nodes["source"] = src_id
|
||
edge_with_nodes["target"] = tgt_id
|
||
all_edges.append(edge_with_nodes)
|
||
return all_edges
|
||
|
||
@abstractmethod
|
||
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
|
||
"""Insert a new node or update an existing node in the graph.
|
||
|
||
Importance notes for in-memory storage:
|
||
1. Changes will be persisted to disk during the next index_done_callback
|
||
2. Only one process should updating the storage at a time before index_done_callback,
|
||
KG-storage-log should be used to avoid data corruption
|
||
|
||
Args:
|
||
node_id: The ID of the node to insert or update
|
||
node_data: A dictionary of node properties
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def upsert_edge(
|
||
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
|
||
) -> None:
|
||
"""Insert a new edge or update an existing edge in the graph.
|
||
|
||
Importance notes for in-memory storage:
|
||
1. Changes will be persisted to disk during the next index_done_callback
|
||
2. Only one process should updating the storage at a time before index_done_callback,
|
||
KG-storage-log should be used to avoid data corruption
|
||
|
||
Args:
|
||
source_node_id: The ID of the source node
|
||
target_node_id: The ID of the target node
|
||
edge_data: A dictionary of edge properties
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def delete_node(self, node_id: str) -> None:
|
||
"""Delete a node from the graph.
|
||
|
||
Importance notes for in-memory storage:
|
||
1. Changes will be persisted to disk during the next index_done_callback
|
||
2. Only one process should updating the storage at a time before index_done_callback,
|
||
KG-storage-log should be used to avoid data corruption
|
||
|
||
Args:
|
||
node_id: The ID of the node to delete
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def remove_nodes(self, nodes: list[str]):
|
||
"""Delete multiple nodes
|
||
|
||
Importance notes:
|
||
1. Changes will be persisted to disk during the next index_done_callback
|
||
2. Only one process should updating the storage at a time before index_done_callback,
|
||
KG-storage-log should be used to avoid data corruption
|
||
|
||
Args:
|
||
nodes: List of node IDs to be deleted
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def remove_edges(self, edges: list[tuple[str, str]]):
|
||
"""Delete multiple edges
|
||
|
||
Importance notes:
|
||
1. Changes will be persisted to disk during the next index_done_callback
|
||
2. Only one process should updating the storage at a time before index_done_callback,
|
||
KG-storage-log should be used to avoid data corruption
|
||
|
||
Args:
|
||
edges: List of edges to be deleted, each edge is a (source, target) tuple
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def get_all_labels(self) -> list[str]:
|
||
"""Get all labels in the graph.
|
||
|
||
Returns:
|
||
A list of all node labels in the graph, sorted alphabetically
|
||
"""
|
||
|
||
@abstractmethod
|
||
async def get_knowledge_graph(
|
||
self, node_label: str, max_depth: int = 3, max_nodes: int = 1000
|
||
) -> KnowledgeGraph:
|
||
"""
|
||
Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
|
||
|
||
Args:
|
||
node_label: Label of the starting node,* means all nodes
|
||
max_depth: Maximum depth of the subgraph, Defaults to 3
|
||
max_nodes: Maxiumu nodes to return, Defaults to 1000(BFS if possible)
|
||
|
||
Returns:
|
||
KnowledgeGraph object containing nodes and edges, with an is_truncated flag
|
||
indicating whether the graph was truncated due to max_nodes limit
|
||
"""
|
||
|
||
|
||
class DocStatus(str, Enum):
|
||
"""Document processing status"""
|
||
|
||
PENDING = "pending"
|
||
PROCESSING = "processing"
|
||
PROCESSED = "processed"
|
||
FAILED = "failed"
|
||
|
||
|
||
@dataclass
|
||
class DocProcessingStatus:
|
||
"""Document processing status data structure"""
|
||
|
||
content: str
|
||
"""Original content of the document"""
|
||
content_summary: str
|
||
"""First 100 chars of document content, used for preview"""
|
||
content_length: int
|
||
"""Total length of document"""
|
||
file_path: str
|
||
"""File path of the document"""
|
||
status: DocStatus
|
||
"""Current processing status"""
|
||
created_at: str
|
||
"""ISO format timestamp when document was created"""
|
||
updated_at: str
|
||
"""ISO format timestamp when document was last updated"""
|
||
chunks_count: int | None = None
|
||
"""Number of chunks after splitting, used for processing"""
|
||
error: str | None = None
|
||
"""Error message if failed"""
|
||
metadata: dict[str, Any] = field(default_factory=dict)
|
||
"""Additional metadata"""
|
||
|
||
|
||
@dataclass
|
||
class DocStatusStorage(BaseKVStorage, ABC):
|
||
"""Base class for document status storage"""
|
||
|
||
@abstractmethod
|
||
async def get_status_counts(self) -> dict[str, int]:
|
||
"""Get counts of documents in each status"""
|
||
|
||
@abstractmethod
|
||
async def get_docs_by_status(
|
||
self, status: DocStatus
|
||
) -> dict[str, DocProcessingStatus]:
|
||
"""Get all documents with a specific status"""
|
||
|
||
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
|
||
"""Drop cache is not supported for Doc Status storage"""
|
||
return False
|
||
|
||
|
||
class StoragesStatus(str, Enum):
|
||
"""Storages status"""
|
||
|
||
NOT_CREATED = "not_created"
|
||
CREATED = "created"
|
||
INITIALIZED = "initialized"
|
||
FINALIZED = "finalized"
|
||
|
||
|
||
@dataclass
|
||
class DeletionResult:
|
||
"""Represents the result of a deletion operation."""
|
||
|
||
status: Literal["success", "not_found", "fail"]
|
||
doc_id: str
|
||
message: str
|
||
status_code: int = 200
|
||
file_path: str | None = None
|