LightRAG/lightrag/base.py
Yannick Stephan fc0cf2934e fixed drop
2025-02-18 10:21:14 +01:00

250 lines
7.6 KiB
Python

from __future__ import annotations
from abc import ABC, abstractmethod
from enum import Enum
import os
from dotenv import load_dotenv
from dataclasses import dataclass, field
from typing import (
Any,
Literal,
TypedDict,
TypeVar,
)
import numpy as np
from .utils import EmbeddingFunc
from .types import KnowledgeGraph
load_dotenv()
class TextChunkSchema(TypedDict):
tokens: int
content: str
full_doc_id: str
chunk_order_index: int
T = TypeVar("T")
@dataclass
class QueryParam:
"""Configuration parameters for query execution in LightRAG."""
mode: Literal["local", "global", "hybrid", "naive", "mix"] = "global"
"""Specifies the retrieval mode:
- "local": Focuses on context-dependent information.
- "global": Utilizes global knowledge.
- "hybrid": Combines local and global retrieval methods.
- "naive": Performs a basic search without advanced techniques.
- "mix": Integrates knowledge graph and vector retrieval.
"""
only_need_context: bool = False
"""If True, only returns the retrieved context without generating a response."""
only_need_prompt: bool = False
"""If True, only returns the generated prompt without producing a response."""
response_type: str = "Multiple Paragraphs"
"""Defines the response format. Examples: 'Multiple Paragraphs', 'Single Paragraph', 'Bullet Points'."""
stream: bool = False
"""If True, enables streaming output for real-time responses."""
top_k: int = int(os.getenv("TOP_K", "60"))
"""Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode."""
max_token_for_text_unit: int = int(os.getenv("MAX_TOKEN_TEXT_CHUNK", "4000"))
"""Maximum number of tokens allowed for each retrieved text chunk."""
max_token_for_global_context: int = int(
os.getenv("MAX_TOKEN_RELATION_DESC", "4000")
)
"""Maximum number of tokens allocated for relationship descriptions in global retrieval."""
max_token_for_local_context: int = int(os.getenv("MAX_TOKEN_ENTITY_DESC", "4000"))
"""Maximum number of tokens allocated for entity descriptions in local retrieval."""
hl_keywords: list[str] = field(default_factory=list)
"""List of high-level keywords to prioritize in retrieval."""
ll_keywords: list[str] = field(default_factory=list)
"""List of low-level keywords to refine retrieval focus."""
conversation_history: list[dict[str, str]] = field(default_factory=list)
"""Stores past conversation history to maintain context.
Format: [{"role": "user/assistant", "content": "message"}].
"""
history_turns: int = 3
"""Number of complete conversation turns (user-assistant pairs) to consider in the response context."""
@dataclass
class StorageNameSpace(ABC):
namespace: str
global_config: dict[str, Any]
@abstractmethod
async def index_done_callback(self) -> None:
"""Commit the storage operations after indexing"""
@dataclass
class BaseVectorStorage(StorageNameSpace, ABC):
embedding_func: EmbeddingFunc
cosine_better_than_threshold: float = field(default=0.2)
meta_fields: set[str] = field(default_factory=set)
@abstractmethod
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
"""Query the vector storage and retrieve top_k results."""
@abstractmethod
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
"""Insert or update vectors in the storage."""
@abstractmethod
async def delete_entity(self, entity_name: str) -> None:
"""Delete a single entity by its name."""
@abstractmethod
async def delete_entity_relation(self, entity_name: str) -> None:
"""Delete relations for a given entity."""
@dataclass
class BaseKVStorage(StorageNameSpace, ABC):
embedding_func: EmbeddingFunc
@abstractmethod
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get value by id"""
@abstractmethod
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get values by ids"""
@abstractmethod
async def filter_keys(self, keys: set[str]) -> set[str]:
"""Return un-exist keys"""
@abstractmethod
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
"""Upsert data"""
@dataclass
class BaseGraphStorage(StorageNameSpace, ABC):
embedding_func: EmbeddingFunc
@abstractmethod
async def has_node(self, node_id: str) -> bool:
"""Check if an edge exists in the graph."""
@abstractmethod
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
"""Get the degree of a node."""
@abstractmethod
async def node_degree(self, node_id: str) -> int:
"""Get the degree of an edge."""
@abstractmethod
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
"""Get a node by its id."""
@abstractmethod
async def get_node(self, node_id: str) -> dict[str, str] | None:
"""Get an edge by its source and target node ids."""
@abstractmethod
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> dict[str, str] | None:
"""Get all edges connected to a node."""
@abstractmethod
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
"""Upsert a node into the graph."""
@abstractmethod
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
"""Upsert an edge into the graph."""
@abstractmethod
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
) -> None:
"""Delete a node from the graph."""
@abstractmethod
async def delete_node(self, node_id: str) -> None:
"""Embed nodes using an algorithm."""
@abstractmethod
async def embed_nodes(
self, algorithm: str
) -> tuple[np.ndarray[Any, Any], list[str]]:
"""Get all labels in the graph."""
@abstractmethod
async def get_all_labels(self) -> list[str]:
"""Get a knowledge graph of a node."""
@abstractmethod
async def get_knowledge_graph(
self, node_label: str, max_depth: int = 5
) -> KnowledgeGraph:
"""Retrieve a subgraph of the knowledge graph starting from a given node."""
class DocStatus(str, Enum):
"""Document processing status"""
PENDING = "pending"
PROCESSING = "processing"
PROCESSED = "processed"
FAILED = "failed"
@dataclass
class DocProcessingStatus:
"""Document processing status data structure"""
content: str
"""Original content of the document"""
content_summary: str
"""First 100 chars of document content, used for preview"""
content_length: int
"""Total length of document"""
status: DocStatus
"""Current processing status"""
created_at: str
"""ISO format timestamp when document was created"""
updated_at: str
"""ISO format timestamp when document was last updated"""
chunks_count: int | None = None
"""Number of chunks after splitting, used for processing"""
error: str | None = None
"""Error message if failed"""
metadata: dict[str, Any] = field(default_factory=dict)
"""Additional metadata"""
@dataclass
class DocStatusStorage(BaseKVStorage, ABC):
"""Base class for document status storage"""
@abstractmethod
async def get_status_counts(self) -> dict[str, int]:
"""Get counts of documents in each status"""
@abstractmethod
async def get_docs_by_status(
self, status: DocStatus
) -> dict[str, DocProcessingStatus]:
"""Get all documents with a specific status"""