LightRAG/examples/unofficial-sample/lightrag_bedrock_demo.py
2025-05-14 01:56:26 +08:00

60 lines
1.4 KiB
Python

"""
LightRAG meets Amazon Bedrock ⛰️
"""
import os
import logging
from lightrag import LightRAG, QueryParam
from lightrag.llm.bedrock import bedrock_complete, bedrock_embed
from lightrag.utils import EmbeddingFunc
from lightrag.kg.shared_storage import initialize_pipeline_status
import asyncio
import nest_asyncio
nest_asyncio.apply()
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=bedrock_complete,
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
embedding_func=EmbeddingFunc(
embedding_dim=1024, max_token_size=8192, func=bedrock_embed
),
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
def main():
rag = asyncio.run(initialize_rag())
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
for mode in ["naive", "local", "global", "hybrid"]:
print("\n+-" + "-" * len(mode) + "-+")
print(f"| {mode.capitalize()} |")
print("+-" + "-" * len(mode) + "-+\n")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode=mode)
)
)
if __name__ == "__main__":
main()