mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-16 13:30:40 +00:00
60 lines
1.4 KiB
Python
60 lines
1.4 KiB
Python
"""
|
|
LightRAG meets Amazon Bedrock ⛰️
|
|
"""
|
|
|
|
import os
|
|
import logging
|
|
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.llm.bedrock import bedrock_complete, bedrock_embed
|
|
from lightrag.utils import EmbeddingFunc
|
|
from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
|
|
import asyncio
|
|
import nest_asyncio
|
|
|
|
nest_asyncio.apply()
|
|
|
|
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
|
|
|
|
WORKING_DIR = "./dickens"
|
|
if not os.path.exists(WORKING_DIR):
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
|
|
async def initialize_rag():
|
|
rag = LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
llm_model_func=bedrock_complete,
|
|
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
|
|
embedding_func=EmbeddingFunc(
|
|
embedding_dim=1024, max_token_size=8192, func=bedrock_embed
|
|
),
|
|
)
|
|
|
|
await rag.initialize_storages()
|
|
await initialize_pipeline_status()
|
|
|
|
return rag
|
|
|
|
|
|
def main():
|
|
rag = asyncio.run(initialize_rag())
|
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f:
|
|
rag.insert(f.read())
|
|
|
|
for mode in ["naive", "local", "global", "hybrid"]:
|
|
print("\n+-" + "-" * len(mode) + "-+")
|
|
print(f"| {mode.capitalize()} |")
|
|
print("+-" + "-" * len(mode) + "-+\n")
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode=mode)
|
|
)
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|