LightRAG/examples/unofficial-sample/lightrag_hf_demo.py
2025-05-14 01:56:26 +08:00

83 lines
1.9 KiB
Python

import os
from lightrag import LightRAG, QueryParam
from lightrag.llm.hf import hf_model_complete, hf_embed
from lightrag.utils import EmbeddingFunc
from transformers import AutoModel, AutoTokenizer
from lightrag.kg.shared_storage import initialize_pipeline_status
import asyncio
import nest_asyncio
nest_asyncio.apply()
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=hf_model_complete,
llm_model_name="meta-llama/Llama-3.1-8B-Instruct",
embedding_func=EmbeddingFunc(
embedding_dim=384,
max_token_size=5000,
func=lambda texts: hf_embed(
texts,
tokenizer=AutoTokenizer.from_pretrained(
"sentence-transformers/all-MiniLM-L6-v2"
),
embed_model=AutoModel.from_pretrained(
"sentence-transformers/all-MiniLM-L6-v2"
),
),
),
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
def main():
rag = asyncio.run(initialize_rag())
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
# Perform naive search
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
)
# Perform local search
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
)
# Perform global search
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="global")
)
)
# Perform hybrid search
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
)
)
if __name__ == "__main__":
main()