LightRAG/lightrag/base.py
yangdx 81f887ebab feat: Remove immediate persistence in delete operation
- Enhance delete implementation in JsonKVStorage by removing immediate persistence in delete operation
- Update documentation for drop method to clarify persistence behavior
- Add abstract delete method to BaseKVStorage
2025-03-31 14:14:32 +08:00

350 lines
11 KiB
Python

from __future__ import annotations
from abc import ABC, abstractmethod
from enum import Enum
import os
from dotenv import load_dotenv
from dataclasses import dataclass, field
from typing import (
Any,
Literal,
TypedDict,
TypeVar,
Callable,
)
import numpy as np
from .utils import EmbeddingFunc
from .types import KnowledgeGraph
# use the .env that is inside the current folder
# allows to use different .env file for each lightrag instance
# the OS environment variables take precedence over the .env file
load_dotenv(dotenv_path=".env", override=False)
class TextChunkSchema(TypedDict):
tokens: int
content: str
full_doc_id: str
chunk_order_index: int
T = TypeVar("T")
@dataclass
class QueryParam:
"""Configuration parameters for query execution in LightRAG."""
mode: Literal["local", "global", "hybrid", "naive", "mix"] = "global"
"""Specifies the retrieval mode:
- "local": Focuses on context-dependent information.
- "global": Utilizes global knowledge.
- "hybrid": Combines local and global retrieval methods.
- "naive": Performs a basic search without advanced techniques.
- "mix": Integrates knowledge graph and vector retrieval.
"""
only_need_context: bool = False
"""If True, only returns the retrieved context without generating a response."""
only_need_prompt: bool = False
"""If True, only returns the generated prompt without producing a response."""
response_type: str = "Multiple Paragraphs"
"""Defines the response format. Examples: 'Multiple Paragraphs', 'Single Paragraph', 'Bullet Points'."""
stream: bool = False
"""If True, enables streaming output for real-time responses."""
top_k: int = int(os.getenv("TOP_K", "60"))
"""Number of top items to retrieve. Represents entities in 'local' mode and relationships in 'global' mode."""
max_token_for_text_unit: int = int(os.getenv("MAX_TOKEN_TEXT_CHUNK", "4000"))
"""Maximum number of tokens allowed for each retrieved text chunk."""
max_token_for_global_context: int = int(
os.getenv("MAX_TOKEN_RELATION_DESC", "4000")
)
"""Maximum number of tokens allocated for relationship descriptions in global retrieval."""
max_token_for_local_context: int = int(os.getenv("MAX_TOKEN_ENTITY_DESC", "4000"))
"""Maximum number of tokens allocated for entity descriptions in local retrieval."""
hl_keywords: list[str] = field(default_factory=list)
"""List of high-level keywords to prioritize in retrieval."""
ll_keywords: list[str] = field(default_factory=list)
"""List of low-level keywords to refine retrieval focus."""
conversation_history: list[dict[str, str]] = field(default_factory=list)
"""Stores past conversation history to maintain context.
Format: [{"role": "user/assistant", "content": "message"}].
"""
history_turns: int = 3
"""Number of complete conversation turns (user-assistant pairs) to consider in the response context."""
ids: list[str] | None = None
"""List of ids to filter the results."""
model_func: Callable[..., object] | None = None
"""Optional override for the LLM model function to use for this specific query.
If provided, this will be used instead of the global model function.
This allows using different models for different query modes.
"""
@dataclass
class StorageNameSpace(ABC):
namespace: str
global_config: dict[str, Any]
async def initialize(self):
"""Initialize the storage"""
pass
async def finalize(self):
"""Finalize the storage"""
pass
@abstractmethod
async def index_done_callback(self) -> None:
"""Commit the storage operations after indexing"""
@abstractmethod
async def drop(self) -> dict[str, str]:
"""Drop all data from storage and clean up resources
This abstract method defines the contract for dropping all data from a storage implementation.
Each storage type must implement this method to:
1. Clear all data from memory and/or external storage
2. Remove any associated storage files if applicable
3. Reset the storage to its initial state
4. Handle cleanup of any resources
5. Notify other processes if necessary
6. This action should persistent the data to disk immediately.
Returns:
dict[str, str]: Operation status and message with the following format:
{
"status": str, # "success" or "error"
"message": str # "data dropped" on success, error details on failure
}
Implementation specific:
- On success: return {"status": "success", "message": "data dropped"}
- On failure: return {"status": "error", "message": "<error details>"}
- If not supported: return {"status": "error", "message": "unsupported"}
"""
@dataclass
class BaseVectorStorage(StorageNameSpace, ABC):
embedding_func: EmbeddingFunc
cosine_better_than_threshold: float = field(default=0.2)
meta_fields: set[str] = field(default_factory=set)
@abstractmethod
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
) -> list[dict[str, Any]]:
"""Query the vector storage and retrieve top_k results."""
@abstractmethod
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
"""Insert or update vectors in the storage."""
@abstractmethod
async def delete_entity(self, entity_name: str) -> None:
"""Delete a single entity by its name."""
@abstractmethod
async def delete_entity_relation(self, entity_name: str) -> None:
"""Delete relations for a given entity."""
@abstractmethod
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
pass
@abstractmethod
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
pass
@dataclass
class BaseKVStorage(StorageNameSpace, ABC):
embedding_func: EmbeddingFunc
@abstractmethod
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get value by id"""
@abstractmethod
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get values by ids"""
@abstractmethod
async def filter_keys(self, keys: set[str]) -> set[str]:
"""Return un-exist keys"""
@abstractmethod
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
"""Upsert data"""
@abstractmethod
async def delete(self, ids: list[str]) -> None:
"""Delete specific records from storage by their IDs
This method will:
1. Remove the specified records from in-memory storage
2. For in-memory DB, update flags to notify other processes that data persistence is needed
3. For in-memory DB, changes will be persisted to disk during the next index_done_callback
Args:
ids (list[str]): List of document IDs to be deleted from storage
Returns:
None
"""
@dataclass
class BaseGraphStorage(StorageNameSpace, ABC):
embedding_func: EmbeddingFunc
@abstractmethod
async def has_node(self, node_id: str) -> bool:
"""Check if an edge exists in the graph."""
@abstractmethod
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
"""Get the degree of a node."""
@abstractmethod
async def node_degree(self, node_id: str) -> int:
"""Get the degree of an edge."""
@abstractmethod
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
"""Get a node by its id."""
@abstractmethod
async def get_node(self, node_id: str) -> dict[str, str] | None:
"""Get an edge by its source and target node ids."""
@abstractmethod
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> dict[str, str] | None:
"""Get all edges connected to a node."""
@abstractmethod
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
"""Upsert a node into the graph."""
@abstractmethod
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
"""Upsert an edge into the graph."""
@abstractmethod
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
) -> None:
"""Delete a node from the graph."""
@abstractmethod
async def delete_node(self, node_id: str) -> None:
"""Embed nodes using an algorithm."""
@abstractmethod
async def embed_nodes(
self, algorithm: str
) -> tuple[np.ndarray[Any, Any], list[str]]:
"""Get all labels in the graph."""
@abstractmethod
async def get_all_labels(self) -> list[str]:
"""Get a knowledge graph of a node."""
@abstractmethod
async def get_knowledge_graph(
self, node_label: str, max_depth: int = 3
) -> KnowledgeGraph:
"""Retrieve a subgraph of the knowledge graph starting from a given node."""
class DocStatus(str, Enum):
"""Document processing status"""
PENDING = "pending"
PROCESSING = "processing"
PROCESSED = "processed"
FAILED = "failed"
@dataclass
class DocProcessingStatus:
"""Document processing status data structure"""
content: str
"""Original content of the document"""
content_summary: str
"""First 100 chars of document content, used for preview"""
content_length: int
"""Total length of document"""
file_path: str
"""File path of the document"""
status: DocStatus
"""Current processing status"""
created_at: str
"""ISO format timestamp when document was created"""
updated_at: str
"""ISO format timestamp when document was last updated"""
chunks_count: int | None = None
"""Number of chunks after splitting, used for processing"""
error: str | None = None
"""Error message if failed"""
metadata: dict[str, Any] = field(default_factory=dict)
"""Additional metadata"""
@dataclass
class DocStatusStorage(BaseKVStorage, ABC):
"""Base class for document status storage"""
@abstractmethod
async def get_status_counts(self) -> dict[str, int]:
"""Get counts of documents in each status"""
@abstractmethod
async def get_docs_by_status(
self, status: DocStatus
) -> dict[str, DocProcessingStatus]:
"""Get all documents with a specific status"""
class StoragesStatus(str, Enum):
"""Storages status"""
NOT_CREATED = "not_created"
CREATED = "created"
INITIALIZED = "initialized"
FINALIZED = "finalized"