LightRAG/lightrag/kg/oracle_impl.py
jin 85331e3fa2 update Oracle support
add cache support, fix bug
2025-01-10 11:36:28 +08:00

963 lines
40 KiB
Python

import asyncio
# import html
# import os
from dataclasses import dataclass
from typing import Union, List, Dict, Set, Any, Tuple
import numpy as np
import array
from ..utils import logger
from ..base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
DocStatusStorage,
DocStatus,
DocProcessingStatus,
)
import oracledb
class OracleDB:
def __init__(self, config, **kwargs):
self.host = config.get("host", None)
self.port = config.get("port", None)
self.user = config.get("user", None)
self.password = config.get("password", None)
self.dsn = config.get("dsn", None)
self.config_dir = config.get("config_dir", None)
self.wallet_location = config.get("wallet_location", None)
self.wallet_password = config.get("wallet_password", None)
self.workspace = config.get("workspace", None)
self.max = 12
self.increment = 1
logger.info(f"Using the label {self.workspace} for Oracle Graph as identifier")
if self.user is None or self.password is None:
raise ValueError("Missing database user or password in addon_params")
try:
oracledb.defaults.fetch_lobs = False
self.pool = oracledb.create_pool_async(
user=self.user,
password=self.password,
dsn=self.dsn,
config_dir=self.config_dir,
wallet_location=self.wallet_location,
wallet_password=self.wallet_password,
min=1,
max=self.max,
increment=self.increment,
)
logger.info(f"Connected to Oracle database at {self.dsn}")
except Exception as e:
logger.error(f"Failed to connect to Oracle database at {self.dsn}")
logger.error(f"Oracle database error: {e}")
raise
def numpy_converter_in(self, value):
"""Convert numpy array to array.array"""
if value.dtype == np.float64:
dtype = "d"
elif value.dtype == np.float32:
dtype = "f"
else:
dtype = "b"
return array.array(dtype, value)
def input_type_handler(self, cursor, value, arraysize):
"""Set the type handler for the input data"""
if isinstance(value, np.ndarray):
return cursor.var(
oracledb.DB_TYPE_VECTOR,
arraysize=arraysize,
inconverter=self.numpy_converter_in,
)
def numpy_converter_out(self, value):
"""Convert array.array to numpy array"""
if value.typecode == "b":
dtype = np.int8
elif value.typecode == "f":
dtype = np.float32
else:
dtype = np.float64
return np.array(value, copy=False, dtype=dtype)
def output_type_handler(self, cursor, metadata):
"""Set the type handler for the output data"""
if metadata.type_code is oracledb.DB_TYPE_VECTOR:
return cursor.var(
metadata.type_code,
arraysize=cursor.arraysize,
outconverter=self.numpy_converter_out,
)
async def check_tables(self):
for k, v in TABLES.items():
try:
if k.lower() == "lightrag_graph":
await self.query(
"SELECT id FROM GRAPH_TABLE (lightrag_graph MATCH (a) COLUMNS (a.id)) fetch first row only"
)
else:
await self.query("SELECT 1 FROM {k}".format(k=k))
except Exception as e:
logger.error(f"Failed to check table {k} in Oracle database")
logger.error(f"Oracle database error: {e}")
try:
# print(v["ddl"])
await self.execute(v["ddl"])
logger.info(f"Created table {k} in Oracle database")
except Exception as e:
logger.error(f"Failed to create table {k} in Oracle database")
logger.error(f"Oracle database error: {e}")
logger.info("Finished check all tables in Oracle database")
async def query(
self, sql: str, params: dict = None, multirows: bool = False
) -> Union[dict, None]:
async with self.pool.acquire() as connection:
connection.inputtypehandler = self.input_type_handler
connection.outputtypehandler = self.output_type_handler
with connection.cursor() as cursor:
try:
await cursor.execute(sql, params)
except Exception as e:
logger.error(f"Oracle database error: {e}")
print(sql)
print(params)
raise
columns = [column[0].lower() for column in cursor.description]
if multirows:
rows = await cursor.fetchall()
if rows:
data = [dict(zip(columns, row)) for row in rows]
else:
data = []
else:
row = await cursor.fetchone()
if row:
data = dict(zip(columns, row))
else:
data = None
return data
async def execute(self, sql: str, data: Union[list, dict] = None):
# logger.info("go into OracleDB execute method")
try:
async with self.pool.acquire() as connection:
connection.inputtypehandler = self.input_type_handler
connection.outputtypehandler = self.output_type_handler
with connection.cursor() as cursor:
if data is None:
await cursor.execute(sql)
else:
# print(data)
# print(sql)
await cursor.execute(sql, data)
await connection.commit()
except Exception as e:
logger.error(f"Oracle database error: {e}")
print(sql)
print(data)
raise
@dataclass
class OracleKVStorage(BaseKVStorage):
# should pass db object to self.db
db: OracleDB = None
meta_fields = None
def __post_init__(self):
self._data = {}
self._max_batch_size = self.global_config["embedding_batch_num"]
################ QUERY METHODS ################
async def get_by_id(self, id: str) -> Union[dict, None]:
"""get doc_full data based on id."""
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
params = {"workspace": self.db.workspace, "id": id}
# print("get_by_id:"+SQL)
if "llm_response_cache" == self.namespace:
array_res = await self.db.query(SQL, params, multirows=True)
res = {}
for row in array_res:
res[row["id"]] = row
else:
res = await self.db.query(SQL, params)
if res:
return res
else:
return None
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
"""Specifically for llm_response_cache."""
SQL = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
params = {"workspace": self.db.workspace, "cache_mode": mode, "id": id}
if "llm_response_cache" == self.namespace:
array_res = await self.db.query(SQL, params, multirows=True)
res = {}
for row in array_res:
res[row["id"]] = row
return res
else:
return None
# Query by id
async def get_by_ids(self, ids: list[str], fields=None) -> Union[list[dict], None]:
"""get doc_chunks data based on id"""
SQL = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
ids=",".join([f"'{id}'" for id in ids])
)
params = {"workspace": self.db.workspace}
# print("get_by_ids:"+SQL)
res = await self.db.query(SQL, params, multirows=True)
if "llm_response_cache" == self.namespace:
modes = set()
dict_res: dict[str, dict] = {}
for row in res:
modes.add(row["mode"])
for mode in modes:
if mode not in dict_res:
dict_res[mode] = {}
for row in res:
dict_res[row["mode"]][row["id"]] = row
res = [{k: v} for k, v in dict_res.items()]
if res:
data = res # [{"data":i} for i in res]
# print(data)
return data
else:
return None
async def filter_keys(self, keys: list[str]) -> set[str]:
"""remove duplicated"""
SQL = SQL_TEMPLATES["filter_keys"].format(
table_name=N_T[self.namespace], ids=",".join([f"'{id}'" for id in keys])
)
params = {"workspace": self.db.workspace}
try:
await self.db.query(SQL, params)
except Exception as e:
logger.error(f"Oracle database error: {e}")
print(SQL)
print(params)
res = await self.db.query(SQL, params, multirows=True)
data = None
if res:
exist_keys = [key["id"] for key in res]
data = set([s for s in keys if s not in exist_keys])
else:
exist_keys = []
data = set([s for s in keys if s not in exist_keys])
return data
################ INSERT METHODS ################
async def upsert(self, data: dict[str, dict]):
left_data = {k: v for k, v in data.items() if k not in self._data}
self._data.update(left_data)
# print(self._data)
# values = []
if self.namespace == "text_chunks":
list_data = [
{
"__id__": k,
**{k1: v1 for k1, v1 in v.items()},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embeddings_list = await asyncio.gather(
*[self.embedding_func(batch) for batch in batches]
)
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["__vector__"] = embeddings[i]
# print(list_data)
for item in list_data:
merge_sql = SQL_TEMPLATES["merge_chunk"]
data = {
"check_id": item["__id__"],
"id": item["__id__"],
"content": item["content"],
"workspace": self.db.workspace,
"tokens": item["tokens"],
"chunk_order_index": item["chunk_order_index"],
"full_doc_id": item["full_doc_id"],
"content_vector": item["__vector__"],
}
# print(merge_sql)
await self.db.execute(merge_sql, data)
if self.namespace == "full_docs":
for k, v in self._data.items():
# values.clear()
merge_sql = SQL_TEMPLATES["merge_doc_full"]
data = {
"id": k,
"content": v["content"],
"workspace": self.db.workspace,
}
# print(merge_sql)
await self.db.execute(merge_sql, data)
if self.namespace == "llm_response_cache":
for mode, items in data.items():
for k, v in items.items():
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
_data = {
"workspace": self.db.workspace,
"id": k,
"original_prompt": v["original_prompt"],
"return_value": v["return"],
"cache_mode": mode,
}
await self.db.execute(upsert_sql, _data)
return left_data
async def index_done_callback(self):
if self.namespace in ["full_docs", "text_chunks"]:
logger.info("full doc and chunk data had been saved into oracle db!")
@dataclass
class OracleDocStatusStorage(DocStatusStorage):
"""Oracle implementation of document status storage"""
# should pass db object to self.db
db: OracleDB = None
meta_fields = None
def __post_init__(self):
pass
async def filter_keys(self, ids: list[str]) -> set[str]:
"""Return keys that don't exist in storage"""
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace].format(
ids = ",".join([f"'{id}'" for id in ids])
)
params = {"workspace": self.db.workspace}
res = await self.db.query(SQL, params, True)
# The result is like [{'id': 'id1'}, {'id': 'id2'}, ...].
if res:
existed = set([element["id"] for element in res])
return set(ids) - existed
else:
return set(ids)
async def get_status_counts(self) -> Dict[str, int]:
"""Get counts of documents in each status"""
SQL = SQL_TEMPLATES["get_status_counts"]
params = {"workspace": self.db.workspace}
res = await self.db.query(SQL, params, True)
# Result is like [{'status': 'PENDING', 'count': 1}, {'status': 'PROCESSING', 'count': 2}, ...]
counts = {}
for doc in res:
counts[doc["status"]] = doc["count"]
return counts
async def get_docs_by_status(self, status: DocStatus) -> Dict[str, DocProcessingStatus]:
"""Get all documents by status"""
SQL = SQL_TEMPLATES["get_docs_by_status"]
params = {"workspace": self.db.workspace, "status": status}
res = await self.db.query(SQL, params, True)
# Result is like [{'id': 'id1', 'status': 'PENDING', 'updated_at': '2023-07-01 00:00:00'}, {'id': 'id2', 'status': 'PENDING', 'updated_at': '2023-07-01 00:00:00'}, ...]
# Converting to be a dict
return {
element["id"]: DocProcessingStatus(
#content_summary=element["content_summary"],
content_summary = "",
content_length=element["CONTENT_LENGTH"],
status=element["STATUS"],
created_at=element["CREATETIME"],
updated_at=element["UPDATETIME"],
chunks_count=-1,
#chunks_count=element["chunks_count"],
)
for element in res
}
async def get_failed_docs(self) -> Dict[str, DocProcessingStatus]:
"""Get all failed documents"""
return await self.get_docs_by_status(DocStatus.FAILED)
async def get_pending_docs(self) -> Dict[str, DocProcessingStatus]:
"""Get all pending documents"""
return await self.get_docs_by_status(DocStatus.PENDING)
async def index_done_callback(self):
"""Save data after indexing, but for ORACLE, we already saved them during the upsert stage, so no action to take here"""
logger.info("Doc status had been saved into ORACLE db!")
async def upsert(self, data: dict[str, dict]):
"""Update or insert document status
Args:
data: Dictionary of document IDs and their status data
"""
SQL = SQL_TEMPLATES["merge_doc_status"]
for k, v in data.items():
# chunks_count is optional
params = {
"workspace": self.db.workspace,
"id": k,
"content_summary": v["content_summary"],
"content_length": v["content_length"],
"chunks_count": v["chunks_count"] if "chunks_count" in v else -1,
"status": v["status"],
}
await self.db.execute(SQL, params)
return data
@dataclass
class OracleVectorDBStorage(BaseVectorStorage):
# should pass db object to self.db
db: OracleDB = None
cosine_better_than_threshold: float = 0.2
def __post_init__(self):
pass
async def upsert(self, data: dict[str, dict]):
"""向向量数据库中插入数据"""
pass
async def index_done_callback(self):
pass
#################### query method ###############
async def query(self, query: str, top_k=5) -> Union[dict, list[dict]]:
"""从向量数据库中查询数据"""
embeddings = await self.embedding_func([query])
embedding = embeddings[0]
# 转换精度
dtype = str(embedding.dtype).upper()
dimension = embedding.shape[0]
embedding_string = "[" + ", ".join(map(str, embedding.tolist())) + "]"
SQL = SQL_TEMPLATES[self.namespace].format(dimension=dimension, dtype=dtype)
params = {
"embedding_string": embedding_string,
"workspace": self.db.workspace,
"top_k": top_k,
"better_than_threshold": self.cosine_better_than_threshold,
}
# print(SQL)
results = await self.db.query(SQL, params=params, multirows=True)
# print("vector search result:",results)
return results
@dataclass
class OracleGraphStorage(BaseGraphStorage):
"""基于Oracle的图存储模块"""
def __post_init__(self):
"""从graphml文件加载图"""
self._max_batch_size = self.global_config["embedding_batch_num"]
#################### insert method ################
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
"""插入或更新节点"""
# print("go into upsert node method")
entity_name = node_id
entity_type = node_data["entity_type"]
description = node_data["description"]
source_id = node_data["source_id"]
logger.debug(f"entity_name:{entity_name}, entity_type:{entity_type}")
content = entity_name + description
contents = [content]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embeddings_list = await asyncio.gather(
*[self.embedding_func(batch) for batch in batches]
)
embeddings = np.concatenate(embeddings_list)
content_vector = embeddings[0]
merge_sql = SQL_TEMPLATES["merge_node"]
data = {
"workspace": self.db.workspace,
"name": entity_name,
"entity_type": entity_type,
"description": description,
"source_chunk_id": source_id,
"content": content,
"content_vector": content_vector,
}
# print(merge_sql)
await self.db.execute(merge_sql, data)
# self._graph.add_node(node_id, **node_data)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
):
"""插入或更新边"""
# print("go into upsert edge method")
source_name = source_node_id
target_name = target_node_id
weight = edge_data["weight"]
keywords = edge_data["keywords"]
description = edge_data["description"]
source_chunk_id = edge_data["source_id"]
logger.debug(
f"source_name:{source_name}, target_name:{target_name}, keywords: {keywords}"
)
content = keywords + source_name + target_name + description
contents = [content]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embeddings_list = await asyncio.gather(
*[self.embedding_func(batch) for batch in batches]
)
embeddings = np.concatenate(embeddings_list)
content_vector = embeddings[0]
merge_sql = SQL_TEMPLATES["merge_edge"]
data = {
"workspace": self.db.workspace,
"source_name": source_name,
"target_name": target_name,
"weight": weight,
"keywords": keywords,
"description": description,
"source_chunk_id": source_chunk_id,
"content": content,
"content_vector": content_vector,
}
# print(merge_sql)
await self.db.execute(merge_sql, data)
# self._graph.add_edge(source_node_id, target_node_id, **edge_data)
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
"""为节点生成向量"""
if algorithm not in self._node_embed_algorithms:
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
return await self._node_embed_algorithms[algorithm]()
async def _node2vec_embed(self):
"""为节点生成向量"""
from graspologic import embed
embeddings, nodes = embed.node2vec_embed(
self._graph,
**self.config["node2vec_params"],
)
nodes_ids = [self._graph.nodes[node_id]["id"] for node_id in nodes]
return embeddings, nodes_ids
async def index_done_callback(self):
"""写入graphhml图文件"""
logger.info(
"Node and edge data had been saved into oracle db already, so nothing to do here!"
)
#################### query method #################
async def has_node(self, node_id: str) -> bool:
"""根据节点id检查节点是否存在"""
SQL = SQL_TEMPLATES["has_node"]
params = {"workspace": self.db.workspace, "node_id": node_id}
# print(SQL)
# print(self.db.workspace, node_id)
res = await self.db.query(SQL, params)
if res:
# print("Node exist!",res)
return True
else:
# print("Node not exist!")
return False
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
"""根据源和目标节点id检查边是否存在"""
SQL = SQL_TEMPLATES["has_edge"]
params = {
"workspace": self.db.workspace,
"source_node_id": source_node_id,
"target_node_id": target_node_id,
}
# print(SQL)
res = await self.db.query(SQL, params)
if res:
# print("Edge exist!",res)
return True
else:
# print("Edge not exist!")
return False
async def node_degree(self, node_id: str) -> int:
"""根据节点id获取节点的度"""
SQL = SQL_TEMPLATES["node_degree"]
params = {"workspace": self.db.workspace, "node_id": node_id}
# print(SQL)
res = await self.db.query(SQL, params)
if res:
# print("Node degree",res["degree"])
return res["degree"]
else:
# print("Edge not exist!")
return 0
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
"""根据源和目标节点id获取边的度"""
degree = await self.node_degree(src_id) + await self.node_degree(tgt_id)
# print("Edge degree",degree)
return degree
async def get_node(self, node_id: str) -> Union[dict, None]:
"""根据节点id获取节点数据"""
SQL = SQL_TEMPLATES["get_node"]
params = {"workspace": self.db.workspace, "node_id": node_id}
# print(self.db.workspace, node_id)
# print(SQL)
res = await self.db.query(SQL, params)
if res:
# print("Get node!",self.db.workspace, node_id,res)
return res
else:
# print("Can't get node!",self.db.workspace, node_id)
return None
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> Union[dict, None]:
"""根据源和目标节点id获取边"""
SQL = SQL_TEMPLATES["get_edge"]
params = {
"workspace": self.db.workspace,
"source_node_id": source_node_id,
"target_node_id": target_node_id,
}
res = await self.db.query(SQL, params)
if res:
# print("Get edge!",self.db.workspace, source_node_id, target_node_id,res[0])
return res
else:
# print("Edge not exist!",self.db.workspace, source_node_id, target_node_id)
return None
async def get_node_edges(self, source_node_id: str):
"""根据节点id获取节点的所有边"""
if await self.has_node(source_node_id):
SQL = SQL_TEMPLATES["get_node_edges"]
params = {"workspace": self.db.workspace, "source_node_id": source_node_id}
res = await self.db.query(sql=SQL, params=params, multirows=True)
if res:
data = [(i["source_name"], i["target_name"]) for i in res]
# print("Get node edge!",self.db.workspace, source_node_id,data)
return data
else:
# print("Node Edge not exist!",self.db.workspace, source_node_id)
return []
async def get_all_nodes(self, limit: int):
"""查询所有节点"""
SQL = SQL_TEMPLATES["get_all_nodes"]
params = {"workspace": self.db.workspace, "limit": str(limit)}
res = await self.db.query(sql=SQL, params=params, multirows=True)
if res:
return res
async def get_all_edges(self, limit: int):
"""查询所有边"""
SQL = SQL_TEMPLATES["get_all_edges"]
params = {"workspace": self.db.workspace, "limit": str(limit)}
res = await self.db.query(sql=SQL, params=params, multirows=True)
if res:
return res
async def get_statistics(self):
SQL = SQL_TEMPLATES["get_statistics"]
params = {"workspace": self.db.workspace}
res = await self.db.query(sql=SQL, params=params, multirows=True)
if res:
return res
N_T = {
"full_docs": "LIGHTRAG_DOC_FULL",
"text_chunks": "LIGHTRAG_DOC_CHUNKS",
"chunks": "LIGHTRAG_DOC_CHUNKS",
"entities": "LIGHTRAG_GRAPH_NODES",
"relationships": "LIGHTRAG_GRAPH_EDGES",
}
TABLES = {
"LIGHTRAG_DOC_FULL": {
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
id varchar(256),
workspace varchar(1024),
doc_name varchar(1024),
content CLOB,
meta JSON,
content_summary varchar(1024),
content_length NUMBER,
status varchar(256),
chunks_count NUMBER,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL,
error varchar(4096)
)"""
},
"LIGHTRAG_DOC_CHUNKS": {
"ddl": """CREATE TABLE LIGHTRAG_DOC_CHUNKS (
id varchar(256) PRIMARY KEY,
workspace varchar(1024),
full_doc_id varchar(256),
chunk_order_index NUMBER,
tokens NUMBER,
content CLOB,
content_vector VECTOR,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
)"""
},
"LIGHTRAG_GRAPH_NODES": {
"ddl": """CREATE TABLE LIGHTRAG_GRAPH_NODES (
id NUMBER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
workspace varchar(1024),
name varchar(2048),
entity_type varchar(1024),
description CLOB,
source_chunk_id varchar(256),
content CLOB,
content_vector VECTOR,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
)"""
},
"LIGHTRAG_GRAPH_EDGES": {
"ddl": """CREATE TABLE LIGHTRAG_GRAPH_EDGES (
id NUMBER GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
workspace varchar(1024),
source_name varchar(2048),
target_name varchar(2048),
weight NUMBER,
keywords CLOB,
description CLOB,
source_chunk_id varchar(256),
content CLOB,
content_vector VECTOR,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
)"""
},
"LIGHTRAG_LLM_CACHE": {
"ddl": """CREATE TABLE LIGHTRAG_LLM_CACHE (
id varchar(256) PRIMARY KEY,
workspace varchar(1024),
cache_mode varchar(256),
model_name varchar(256),
original_prompt clob,
return_value clob,
embedding CLOB,
embedding_shape NUMBER,
embedding_min NUMBER,
embedding_max NUMBER,
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updatetime TIMESTAMP DEFAULT NULL
)"""
},
"LIGHTRAG_GRAPH": {
"ddl": """CREATE OR REPLACE PROPERTY GRAPH lightrag_graph
VERTEX TABLES (
lightrag_graph_nodes KEY (id)
LABEL entity
PROPERTIES (id,workspace,name) -- ,entity_type,description,source_chunk_id)
)
EDGE TABLES (
lightrag_graph_edges KEY (id)
SOURCE KEY (source_name) REFERENCES lightrag_graph_nodes(name)
DESTINATION KEY (target_name) REFERENCES lightrag_graph_nodes(name)
LABEL has_relation
PROPERTIES (id,workspace,source_name,target_name) -- ,weight, keywords,description,source_chunk_id)
) OPTIONS(ALLOW MIXED PROPERTY TYPES)"""
},
}
SQL_TEMPLATES = {
# SQL for KVStorage
"get_by_id_full_docs": "select ID,NVL(content,'') as content from LIGHTRAG_DOC_FULL where workspace=:workspace and ID=:id",
"get_by_id_text_chunks": "select ID,TOKENS,NVL(content,'') as content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID=:id",
"get_by_id_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND id=:id""",
"get_by_mode_id_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND cache_mode=:cache_mode AND id=:id""",
"get_by_ids_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND id IN ({ids})""",
"get_by_ids_full_docs": "select ID,NVL(content,'') as content from LIGHTRAG_DOC_FULL where workspace=:workspace and ID in ({ids})",
"get_by_ids_text_chunks": "select ID,TOKENS,NVL(content,'') as content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID in ({ids})",
"filter_keys": "select id from {table_name} where workspace=:workspace and id in ({ids})",
"merge_doc_full": """MERGE INTO LIGHTRAG_DOC_FULL a
USING DUAL
ON (a.id = :id and a.workspace = :workspace)
WHEN NOT MATCHED THEN
INSERT(id,content,workspace) values(:id,:content,:workspace)""",
"merge_chunk": """MERGE INTO LIGHTRAG_DOC_CHUNKS a
USING DUAL
ON (a.id = :check_id)
WHEN NOT MATCHED THEN
INSERT(id,content,workspace,tokens,chunk_order_index,full_doc_id,content_vector)
values (:id,:content,:workspace,:tokens,:chunk_order_index,:full_doc_id,:content_vector) """,
"upsert_llm_response_cache": """MERGE INTO LIGHTRAG_LLM_CACHE a
USING DUAL
ON (a.id = :id)
WHEN NOT MATCHED THEN
INSERT (workspace,id,original_prompt,return_value,cache_mode)
VALUES (:workspace,:id,:original_prompt,:return_value,:cache_mode)
WHEN MATCHED THEN UPDATE
SET original_prompt = :original_prompt,
return_value = :return_value,
cache_mode = :cache_mode,
updatetime = SYSDATE""",
"get_by_id_doc_status": "SELECT id FROM LIGHTRAG_DOC_FULL WHERE workspace=:workspace AND id IN ({ids})",
"get_status_counts": """SELECT status as "status", COUNT(1) as "count"
FROM LIGHTRAG_DOC_FULL WHERE workspace=:workspace GROUP BY STATUS""",
"get_docs_by_status": """select content_length,status,
TO_CHAR(created_at,'YYYY-MM-DD HH24:MI:SS') as created_at,TO_CHAR(updatetime,'YYYY-MM-DD HH24:MI:SS') as updatetime
from LIGHTRAG_DOC_STATUS where workspace=:workspace and status=:status""",
"merge_doc_status":"""MERGE INTO LIGHTRAG_DOC_FULL a
USING DUAL
ON (a.id = :id and a.workspace = :workspace)
WHEN NOT MATCHED THEN
INSERT (id,content_summary,content_length,chunks_count,status) values(:id,:content_summary,:content_length,:chunks_count,:status)
WHEN MATCHED THEN UPDATE
SET content_summary = :content_summary,
content_length = :content_length,
chunks_count = :chunks_count,
status = :status,
updatetime = SYSDATE""",
# SQL for VectorStorage
"entities": """SELECT name as entity_name FROM
(SELECT id,name,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance
FROM LIGHTRAG_GRAPH_NODES WHERE workspace=:workspace)
WHERE distance>:better_than_threshold ORDER BY distance ASC FETCH FIRST :top_k ROWS ONLY""",
"relationships": """SELECT source_name as src_id, target_name as tgt_id FROM
(SELECT id,source_name,target_name,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance
FROM LIGHTRAG_GRAPH_EDGES WHERE workspace=:workspace)
WHERE distance>:better_than_threshold ORDER BY distance ASC FETCH FIRST :top_k ROWS ONLY""",
"chunks": """SELECT id FROM
(SELECT id,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=:workspace)
WHERE distance>:better_than_threshold ORDER BY distance ASC FETCH FIRST :top_k ROWS ONLY""",
# SQL for GraphStorage
"has_node": """SELECT * FROM GRAPH_TABLE (lightrag_graph
MATCH (a)
WHERE a.workspace=:workspace AND a.name=:node_id
COLUMNS (a.name))""",
"has_edge": """SELECT * FROM GRAPH_TABLE (lightrag_graph
MATCH (a) -[e]-> (b)
WHERE e.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace
AND a.name=:source_node_id AND b.name=:target_node_id
COLUMNS (e.source_name,e.target_name) )""",
"node_degree": """SELECT count(1) as degree FROM GRAPH_TABLE (lightrag_graph
MATCH (a)-[e]->(b)
WHERE a.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace
AND a.name=:node_id or b.name = :node_id
COLUMNS (a.name))""",
"get_node": """SELECT t1.name,t2.entity_type,t2.source_chunk_id as source_id,NVL(t2.description,'') AS description
FROM GRAPH_TABLE (lightrag_graph
MATCH (a)
WHERE a.workspace=:workspace AND a.name=:node_id
COLUMNS (a.name)
) t1 JOIN LIGHTRAG_GRAPH_NODES t2 on t1.name=t2.name
WHERE t2.workspace=:workspace""",
"get_edge": """SELECT t1.source_id,t2.weight,t2.source_chunk_id as source_id,t2.keywords,
NVL(t2.description,'') AS description,NVL(t2.KEYWORDS,'') AS keywords
FROM GRAPH_TABLE (lightrag_graph
MATCH (a)-[e]->(b)
WHERE e.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace
AND a.name=:source_node_id and b.name = :target_node_id
COLUMNS (e.id,a.name as source_id)
) t1 JOIN LIGHTRAG_GRAPH_EDGES t2 on t1.id=t2.id""",
"get_node_edges": """SELECT source_name,target_name
FROM GRAPH_TABLE (lightrag_graph
MATCH (a)-[e]->(b)
WHERE e.workspace=:workspace and a.workspace=:workspace and b.workspace=:workspace
AND a.name=:source_node_id
COLUMNS (a.name as source_name,b.name as target_name))""",
"merge_node": """MERGE INTO LIGHTRAG_GRAPH_NODES a
USING DUAL
ON (a.workspace=:workspace and a.name=:name)
WHEN NOT MATCHED THEN
INSERT(workspace,name,entity_type,description,source_chunk_id,content,content_vector)
values (:workspace,:name,:entity_type,:description,:source_chunk_id,:content,:content_vector)
WHEN MATCHED THEN
UPDATE SET
entity_type=:entity_type,description=:description,source_chunk_id=:source_chunk_id,content=:content,content_vector=:content_vector,updatetime=SYSDATE""",
"merge_edge": """MERGE INTO LIGHTRAG_GRAPH_EDGES a
USING DUAL
ON (a.workspace=:workspace and a.source_name=:source_name and a.target_name=:target_name)
WHEN NOT MATCHED THEN
INSERT(workspace,source_name,target_name,weight,keywords,description,source_chunk_id,content,content_vector)
values (:workspace,:source_name,:target_name,:weight,:keywords,:description,:source_chunk_id,:content,:content_vector)
WHEN MATCHED THEN
UPDATE SET
weight=:weight,keywords=:keywords,description=:description,source_chunk_id=:source_chunk_id,content=:content,content_vector=:content_vector,updatetime=SYSDATE""",
"get_all_nodes": """WITH t0 AS (
SELECT name AS id, entity_type AS label, entity_type, description,
'["' || replace(source_chunk_id, '<SEP>', '","') || '"]' source_chunk_ids
FROM lightrag_graph_nodes
WHERE workspace = :workspace
ORDER BY createtime DESC fetch first :limit rows only
), t1 AS (
SELECT t0.id, source_chunk_id
FROM t0, JSON_TABLE ( source_chunk_ids, '$[*]' COLUMNS ( source_chunk_id PATH '$' ) )
), t2 AS (
SELECT t1.id, LISTAGG(t2.content, '\n') content
FROM t1 LEFT JOIN lightrag_doc_chunks t2 ON t1.source_chunk_id = t2.id
GROUP BY t1.id
)
SELECT t0.id, label, entity_type, description, t2.content
FROM t0 LEFT JOIN t2 ON t0.id = t2.id""",
"get_all_edges": """SELECT t1.id,t1.keywords as label,t1.keywords, t1.source_name as source, t1.target_name as target,
t1.weight,t1.DESCRIPTION,t2.content
FROM LIGHTRAG_GRAPH_EDGES t1
LEFT JOIN LIGHTRAG_DOC_CHUNKS t2 on t1.source_chunk_id=t2.id
WHERE t1.workspace=:workspace
order by t1.CREATETIME DESC
fetch first :limit rows only""",
"get_statistics": """select count(distinct CASE WHEN type='node' THEN id END) as nodes_count,
count(distinct CASE WHEN type='edge' THEN id END) as edges_count
FROM (
select 'node' as type, id FROM GRAPH_TABLE (lightrag_graph
MATCH (a) WHERE a.workspace=:workspace columns(a.name as id))
UNION
select 'edge' as type, TO_CHAR(id) id FROM GRAPH_TABLE (lightrag_graph
MATCH (a)-[e]->(b) WHERE e.workspace=:workspace columns(e.id))
)""",
}