mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-28 11:20:03 +00:00
89 lines
2.3 KiB
Python
89 lines
2.3 KiB
Python
import os
|
|
import asyncio
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete, openai_embed
|
|
from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
|
|
WORKING_DIR = "./lightrag_demo"
|
|
|
|
if not os.path.exists(WORKING_DIR):
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
|
|
async def initialize_rag():
|
|
rag = LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
embedding_func=openai_embed,
|
|
llm_model_func=gpt_4o_mini_complete, # Default model for queries
|
|
)
|
|
|
|
await rag.initialize_storages()
|
|
await initialize_pipeline_status()
|
|
|
|
return rag
|
|
|
|
|
|
def main():
|
|
# Initialize RAG instance
|
|
rag = asyncio.run(initialize_rag())
|
|
|
|
# Load the data
|
|
with open("./book.txt", "r", encoding="utf-8") as f:
|
|
rag.insert(f.read())
|
|
|
|
# Query with naive mode (default model)
|
|
print("--- NAIVE mode ---")
|
|
print(
|
|
rag.query(
|
|
"What are the main themes in this story?", param=QueryParam(mode="naive")
|
|
)
|
|
)
|
|
|
|
# Query with local mode (default model)
|
|
print("\n--- LOCAL mode ---")
|
|
print(
|
|
rag.query(
|
|
"What are the main themes in this story?", param=QueryParam(mode="local")
|
|
)
|
|
)
|
|
|
|
# Query with global mode (default model)
|
|
print("\n--- GLOBAL mode ---")
|
|
print(
|
|
rag.query(
|
|
"What are the main themes in this story?", param=QueryParam(mode="global")
|
|
)
|
|
)
|
|
|
|
# Query with hybrid mode (default model)
|
|
print("\n--- HYBRID mode ---")
|
|
print(
|
|
rag.query(
|
|
"What are the main themes in this story?", param=QueryParam(mode="hybrid")
|
|
)
|
|
)
|
|
|
|
# Query with mix mode (default model)
|
|
print("\n--- MIX mode ---")
|
|
print(
|
|
rag.query(
|
|
"What are the main themes in this story?", param=QueryParam(mode="mix")
|
|
)
|
|
)
|
|
|
|
# Query with a custom model (gpt-4o) for a more complex question
|
|
print("\n--- Using custom model for complex analysis ---")
|
|
print(
|
|
rag.query(
|
|
"How does the character development reflect Victorian-era attitudes?",
|
|
param=QueryParam(
|
|
mode="global",
|
|
model_func=gpt_4o_complete, # Override default model with more capable one
|
|
),
|
|
)
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|