LightRAG/examples/lightrag_ollama_gremlin_demo.py
2025-04-02 14:43:53 +08:00

123 lines
3.2 KiB
Python

##############################################
# Gremlin storage implementation is deprecated
##############################################
import asyncio
import inspect
import os
# Uncomment these lines below to filter out somewhat verbose INFO level
# logging prints (the default loglevel is INFO).
# This has to go before the lightrag imports to work,
# which triggers linting errors, so we keep it commented out:
# import logging
# logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.WARN)
from lightrag import LightRAG, QueryParam
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
from lightrag.utils import EmbeddingFunc
from lightrag.kg.shared_storage import initialize_pipeline_status
WORKING_DIR = "./dickens_gremlin"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
# Gremlin
os.environ["GREMLIN_HOST"] = "localhost"
os.environ["GREMLIN_PORT"] = "8182"
os.environ["GREMLIN_GRAPH"] = "dickens"
# Creating a non-default source requires manual
# configuration and a restart on the server: use the dafault "g"
os.environ["GREMLIN_TRAVERSE_SOURCE"] = "g"
# No authorization by default on docker tinkerpop/gremlin-server
os.environ["GREMLIN_USER"] = ""
os.environ["GREMLIN_PASSWORD"] = ""
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete,
llm_model_name="llama3.1:8b",
llm_model_max_async=4,
llm_model_max_token_size=32768,
llm_model_kwargs={
"host": "http://localhost:11434",
"options": {"num_ctx": 32768},
},
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embed(
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
),
),
graph_storage="GremlinStorage",
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
async def print_stream(stream):
async for chunk in stream:
print(chunk, end="", flush=True)
def main():
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
# Insert example text
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
# Test different query modes
print("\nNaive Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
)
print("\nLocal Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
)
print("\nGlobal Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="global")
)
)
print("\nHybrid Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
)
)
# stream response
resp = rag.query(
"What are the top themes in this story?",
param=QueryParam(mode="hybrid", stream=True),
)
if inspect.isasyncgen(resp):
asyncio.run(print_stream(resp))
else:
print(resp)
if __name__ == "__main__":
main()