mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-28 11:20:03 +00:00
105 lines
2.7 KiB
Python
105 lines
2.7 KiB
Python
import os
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
|
from lightrag.utils import EmbeddingFunc
|
|
import asyncio
|
|
import nest_asyncio
|
|
|
|
nest_asyncio.apply()
|
|
from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
|
|
# WorkingDir
|
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
WORKING_DIR = os.path.join(ROOT_DIR, "myKG")
|
|
if not os.path.exists(WORKING_DIR):
|
|
os.mkdir(WORKING_DIR)
|
|
print(f"WorkingDir: {WORKING_DIR}")
|
|
|
|
# mongo
|
|
os.environ["MONGO_URI"] = "mongodb://root:root@localhost:27017/"
|
|
os.environ["MONGO_DATABASE"] = "LightRAG"
|
|
|
|
# neo4j
|
|
BATCH_SIZE_NODES = 500
|
|
BATCH_SIZE_EDGES = 100
|
|
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
|
|
os.environ["NEO4J_USERNAME"] = "neo4j"
|
|
os.environ["NEO4J_PASSWORD"] = "neo4j"
|
|
|
|
# milvus
|
|
os.environ["MILVUS_URI"] = "http://localhost:19530"
|
|
os.environ["MILVUS_USER"] = "root"
|
|
os.environ["MILVUS_PASSWORD"] = "root"
|
|
os.environ["MILVUS_DB_NAME"] = "lightrag"
|
|
|
|
|
|
async def initialize_rag():
|
|
rag = LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
llm_model_func=ollama_model_complete,
|
|
llm_model_name="qwen2.5:14b",
|
|
llm_model_max_async=4,
|
|
llm_model_max_token_size=32768,
|
|
llm_model_kwargs={
|
|
"host": "http://127.0.0.1:11434",
|
|
"options": {"num_ctx": 32768},
|
|
},
|
|
embedding_func=EmbeddingFunc(
|
|
embedding_dim=1024,
|
|
max_token_size=8192,
|
|
func=lambda texts: ollama_embed(
|
|
texts=texts, embed_model="bge-m3:latest", host="http://127.0.0.1:11434"
|
|
),
|
|
),
|
|
kv_storage="MongoKVStorage",
|
|
graph_storage="Neo4JStorage",
|
|
vector_storage="MilvusVectorDBStorage",
|
|
)
|
|
|
|
await rag.initialize_storages()
|
|
await initialize_pipeline_status()
|
|
|
|
return rag
|
|
|
|
|
|
def main():
|
|
# Initialize RAG instance
|
|
rag = asyncio.run(initialize_rag())
|
|
|
|
# Insert example text
|
|
with open("./book.txt", "r", encoding="utf-8") as f:
|
|
rag.insert(f.read())
|
|
|
|
# Test different query modes
|
|
print("\nNaive Search:")
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
|
)
|
|
)
|
|
|
|
print("\nLocal Search:")
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="local")
|
|
)
|
|
)
|
|
|
|
print("\nGlobal Search:")
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="global")
|
|
)
|
|
)
|
|
|
|
print("\nHybrid Search:")
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
|
)
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|