LightRAG/examples/lightrag_siliconcloud_demo.py
2025-03-03 18:40:03 +08:00

104 lines
2.5 KiB
Python

import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import openai_complete_if_cache
from lightrag.llm.siliconcloud import siliconcloud_embedding
from lightrag.utils import EmbeddingFunc
import numpy as np
from lightrag.kg.shared_storage import initialize_pipeline_status
WORKING_DIR = "./dickens"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
return await openai_complete_if_cache(
"Qwen/Qwen2.5-7B-Instruct",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=os.getenv("SILICONFLOW_API_KEY"),
base_url="https://api.siliconflow.cn/v1/",
**kwargs,
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await siliconcloud_embedding(
texts,
model="netease-youdao/bce-embedding-base_v1",
api_key=os.getenv("SILICONFLOW_API_KEY"),
max_token_size=512,
)
# function test
async def test_funcs():
result = await llm_model_func("How are you?")
print("llm_model_func: ", result)
result = await embedding_func(["How are you?"])
print("embedding_func: ", result)
asyncio.run(test_funcs())
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=768, max_token_size=512, func=embedding_func
),
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
def main():
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
# Perform naive search
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
)
# Perform local search
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
)
# Perform global search
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="global")
)
)
# Perform hybrid search
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
)
)
if __name__ == "__main__":
main()