mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-11-04 03:39:35 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			57 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			57 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						|
from lightrag import LightRAG, QueryParam
 | 
						|
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
 | 
						|
from lightrag.utils import EmbeddingFunc
 | 
						|
 | 
						|
# WorkingDir
 | 
						|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
 | 
						|
WORKING_DIR = os.path.join(ROOT_DIR, "myKG")
 | 
						|
if not os.path.exists(WORKING_DIR):
 | 
						|
    os.mkdir(WORKING_DIR)
 | 
						|
print(f"WorkingDir: {WORKING_DIR}")
 | 
						|
 | 
						|
# mongo
 | 
						|
os.environ["MONGO_URI"] = "mongodb://root:root@localhost:27017/"
 | 
						|
os.environ["MONGO_DATABASE"] = "LightRAG"
 | 
						|
 | 
						|
# neo4j
 | 
						|
BATCH_SIZE_NODES = 500
 | 
						|
BATCH_SIZE_EDGES = 100
 | 
						|
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
 | 
						|
os.environ["NEO4J_USERNAME"] = "neo4j"
 | 
						|
os.environ["NEO4J_PASSWORD"] = "neo4j"
 | 
						|
 | 
						|
# milvus
 | 
						|
os.environ["MILVUS_URI"] = "http://localhost:19530"
 | 
						|
os.environ["MILVUS_USER"] = "root"
 | 
						|
os.environ["MILVUS_PASSWORD"] = "root"
 | 
						|
os.environ["MILVUS_DB_NAME"] = "lightrag"
 | 
						|
 | 
						|
 | 
						|
rag = LightRAG(
 | 
						|
    working_dir=WORKING_DIR,
 | 
						|
    llm_model_func=ollama_model_complete,
 | 
						|
    llm_model_name="qwen2.5:14b",
 | 
						|
    llm_model_max_async=4,
 | 
						|
    llm_model_max_token_size=32768,
 | 
						|
    llm_model_kwargs={"host": "http://127.0.0.1:11434", "options": {"num_ctx": 32768}},
 | 
						|
    embedding_func=EmbeddingFunc(
 | 
						|
        embedding_dim=1024,
 | 
						|
        max_token_size=8192,
 | 
						|
        func=lambda texts: ollama_embed(
 | 
						|
            texts=texts, embed_model="bge-m3:latest", host="http://127.0.0.1:11434"
 | 
						|
        ),
 | 
						|
    ),
 | 
						|
    kv_storage="MongoKVStorage",
 | 
						|
    graph_storage="Neo4JStorage",
 | 
						|
    vector_storage="MilvusVectorDBStorage",
 | 
						|
)
 | 
						|
 | 
						|
file = "./book.txt"
 | 
						|
with open(file, "r") as f:
 | 
						|
    rag.insert(f.read())
 | 
						|
 | 
						|
print(
 | 
						|
    rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
 | 
						|
)
 |