mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
146 lines
3.9 KiB
Python
146 lines
3.9 KiB
Python
import os
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.llm.llama_index_impl import (
|
|
llama_index_complete_if_cache,
|
|
llama_index_embed,
|
|
)
|
|
from lightrag.utils import EmbeddingFunc
|
|
from llama_index.llms.litellm import LiteLLM
|
|
from llama_index.embeddings.litellm import LiteLLMEmbedding
|
|
import asyncio
|
|
import nest_asyncio
|
|
|
|
nest_asyncio.apply()
|
|
|
|
from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
|
|
# Configure working directory
|
|
WORKING_DIR = "./index_default"
|
|
print(f"WORKING_DIR: {WORKING_DIR}")
|
|
|
|
# Model configuration
|
|
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4")
|
|
print(f"LLM_MODEL: {LLM_MODEL}")
|
|
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
|
|
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
|
|
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
|
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
|
|
|
# LiteLLM configuration
|
|
LITELLM_URL = os.environ.get("LITELLM_URL", "http://localhost:4000")
|
|
print(f"LITELLM_URL: {LITELLM_URL}")
|
|
LITELLM_KEY = os.environ.get("LITELLM_KEY", "sk-1234")
|
|
|
|
if not os.path.exists(WORKING_DIR):
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
|
|
# Initialize LLM function
|
|
async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
|
|
try:
|
|
# Initialize LiteLLM if not in kwargs
|
|
if "llm_instance" not in kwargs:
|
|
llm_instance = LiteLLM(
|
|
model=f"openai/{LLM_MODEL}", # Format: "provider/model_name"
|
|
api_base=LITELLM_URL,
|
|
api_key=LITELLM_KEY,
|
|
temperature=0.7,
|
|
)
|
|
kwargs["llm_instance"] = llm_instance
|
|
|
|
response = await llama_index_complete_if_cache(
|
|
kwargs["llm_instance"],
|
|
prompt,
|
|
system_prompt=system_prompt,
|
|
history_messages=history_messages,
|
|
**kwargs,
|
|
)
|
|
return response
|
|
except Exception as e:
|
|
print(f"LLM request failed: {str(e)}")
|
|
raise
|
|
|
|
|
|
# Initialize embedding function
|
|
async def embedding_func(texts):
|
|
try:
|
|
embed_model = LiteLLMEmbedding(
|
|
model_name=f"openai/{EMBEDDING_MODEL}",
|
|
api_base=LITELLM_URL,
|
|
api_key=LITELLM_KEY,
|
|
)
|
|
return await llama_index_embed(texts, embed_model=embed_model)
|
|
except Exception as e:
|
|
print(f"Embedding failed: {str(e)}")
|
|
raise
|
|
|
|
|
|
# Get embedding dimension
|
|
async def get_embedding_dim():
|
|
test_text = ["This is a test sentence."]
|
|
embedding = await embedding_func(test_text)
|
|
embedding_dim = embedding.shape[1]
|
|
print(f"embedding_dim={embedding_dim}")
|
|
return embedding_dim
|
|
|
|
|
|
async def initialize_rag():
|
|
embedding_dimension = await get_embedding_dim()
|
|
|
|
rag = LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
llm_model_func=llm_model_func,
|
|
embedding_func=EmbeddingFunc(
|
|
embedding_dim=embedding_dimension,
|
|
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
|
func=embedding_func,
|
|
),
|
|
)
|
|
|
|
await rag.initialize_storages()
|
|
await initialize_pipeline_status()
|
|
|
|
return rag
|
|
|
|
|
|
def main():
|
|
# Initialize RAG instance
|
|
rag = asyncio.run(initialize_rag())
|
|
|
|
# Insert example text
|
|
with open("./book.txt", "r", encoding="utf-8") as f:
|
|
rag.insert(f.read())
|
|
|
|
# Test different query modes
|
|
print("\nNaive Search:")
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
|
)
|
|
)
|
|
|
|
print("\nLocal Search:")
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="local")
|
|
)
|
|
)
|
|
|
|
print("\nGlobal Search:")
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="global")
|
|
)
|
|
)
|
|
|
|
print("\nHybrid Search:")
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
|
)
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|