LightRAG/lightrag/llm/llama_index_impl.py
yangdx 9923821d75 refactor: Remove deprecated max_token_size from embedding configuration
This parameter is no longer used. Its removal simplifies the API and clarifies that token length management is handled by upstream text chunking logic rather than the embedding wrapper.
2025-07-29 10:49:35 +08:00

205 lines
5.7 KiB
Python

import pipmaster as pm
from llama_index.core.llms import (
ChatMessage,
MessageRole,
ChatResponse,
)
from typing import List, Optional
from lightrag.utils import logger
# Install required dependencies
if not pm.is_installed("llama-index"):
pm.install("llama-index")
from llama_index.core.embeddings import BaseEmbedding
from llama_index.core.settings import Settings as LlamaIndexSettings
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
retry_if_exception_type,
)
from lightrag.utils import (
wrap_embedding_func_with_attrs,
locate_json_string_body_from_string,
)
from lightrag.exceptions import (
APIConnectionError,
RateLimitError,
APITimeoutError,
)
import numpy as np
def configure_llama_index(settings: LlamaIndexSettings = None, **kwargs):
"""
Configure LlamaIndex settings.
Args:
settings: LlamaIndex Settings instance. If None, uses default settings.
**kwargs: Additional settings to override/configure
"""
if settings is None:
settings = LlamaIndexSettings()
# Update settings with any provided kwargs
for key, value in kwargs.items():
if hasattr(settings, key):
setattr(settings, key, value)
else:
logger.warning(f"Unknown LlamaIndex setting: {key}")
# Set as global settings
LlamaIndexSettings.set_global(settings)
return settings
def format_chat_messages(messages):
"""Format chat messages into LlamaIndex format."""
formatted_messages = []
for msg in messages:
role = msg.get("role", "user")
content = msg.get("content", "")
if role == "system":
formatted_messages.append(
ChatMessage(role=MessageRole.SYSTEM, content=content)
)
elif role == "assistant":
formatted_messages.append(
ChatMessage(role=MessageRole.ASSISTANT, content=content)
)
elif role == "user":
formatted_messages.append(
ChatMessage(role=MessageRole.USER, content=content)
)
else:
logger.warning(f"Unknown role {role}, treating as user message")
formatted_messages.append(
ChatMessage(role=MessageRole.USER, content=content)
)
return formatted_messages
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=60),
retry=retry_if_exception_type(
(RateLimitError, APIConnectionError, APITimeoutError)
),
)
async def llama_index_complete_if_cache(
model: str,
prompt: str,
system_prompt: Optional[str] = None,
history_messages: List[dict] = [],
chat_kwargs={},
) -> str:
"""Complete the prompt using LlamaIndex."""
try:
# Format messages for chat
formatted_messages = []
# Add system message if provided
if system_prompt:
formatted_messages.append(
ChatMessage(role=MessageRole.SYSTEM, content=system_prompt)
)
# Add history messages
for msg in history_messages:
formatted_messages.append(
ChatMessage(
role=MessageRole.USER
if msg["role"] == "user"
else MessageRole.ASSISTANT,
content=msg["content"],
)
)
# Add current prompt
formatted_messages.append(ChatMessage(role=MessageRole.USER, content=prompt))
response: ChatResponse = await model.achat(
messages=formatted_messages, **chat_kwargs
)
# In newer versions, the response is in message.content
content = response.message.content
return content
except Exception as e:
logger.error(f"Error in llama_index_complete_if_cache: {str(e)}")
raise
async def llama_index_complete(
prompt,
system_prompt=None,
history_messages=None,
keyword_extraction=False,
settings: LlamaIndexSettings = None,
**kwargs,
) -> str:
"""
Main completion function for LlamaIndex
Args:
prompt: Input prompt
system_prompt: Optional system prompt
history_messages: Optional chat history
keyword_extraction: Whether to extract keywords from response
settings: Optional LlamaIndex settings
**kwargs: Additional arguments
"""
if history_messages is None:
history_messages = []
keyword_extraction = kwargs.pop("keyword_extraction", None)
result = await llama_index_complete_if_cache(
kwargs.get("llm_instance"),
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
if keyword_extraction:
return locate_json_string_body_from_string(result)
return result
@wrap_embedding_func_with_attrs(embedding_dim=1536)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=60),
retry=retry_if_exception_type(
(RateLimitError, APIConnectionError, APITimeoutError)
),
)
async def llama_index_embed(
texts: list[str],
embed_model: BaseEmbedding = None,
settings: LlamaIndexSettings = None,
**kwargs,
) -> np.ndarray:
"""
Generate embeddings using LlamaIndex
Args:
texts: List of texts to embed
embed_model: LlamaIndex embedding model
settings: Optional LlamaIndex settings
**kwargs: Additional arguments
"""
if settings:
configure_llama_index(settings)
if embed_model is None:
raise ValueError("embed_model must be provided")
# Use _get_text_embeddings for batch processing
embeddings = embed_model._get_text_embeddings(texts)
return np.array(embeddings)