LightRAG/lightrag/api/openai_lightrag_server.py

409 lines
13 KiB
Python

from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from pydantic import BaseModel
import asyncio
import logging
import argparse
from lightrag import LightRAG, QueryParam
from lightrag.llm import openai_complete_if_cache, openai_embedding
from lightrag.utils import EmbeddingFunc
from typing import Optional, List
from enum import Enum
from pathlib import Path
import shutil
import aiofiles
from ascii_colors import trace_exception
import nest_asyncio
# Apply nest_asyncio to solve event loop issues
nest_asyncio.apply()
def parse_args():
parser = argparse.ArgumentParser(
description="LightRAG FastAPI Server with OpenAI integration"
)
# Server configuration
parser.add_argument(
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
)
parser.add_argument(
"--port", type=int, default=9621, help="Server port (default: 9621)"
)
# Directory configuration
parser.add_argument(
"--working-dir",
default="./rag_storage",
help="Working directory for RAG storage (default: ./rag_storage)",
)
parser.add_argument(
"--input-dir",
default="./inputs",
help="Directory containing input documents (default: ./inputs)",
)
# Model configuration
parser.add_argument(
"--model", default="gpt-4", help="OpenAI model name (default: gpt-4)"
)
parser.add_argument(
"--embedding-model",
default="text-embedding-3-large",
help="OpenAI embedding model (default: text-embedding-3-large)",
)
# RAG configuration
parser.add_argument(
"--max-tokens",
type=int,
default=32768,
help="Maximum token size (default: 32768)",
)
parser.add_argument(
"--max-embed-tokens",
type=int,
default=8192,
help="Maximum embedding token size (default: 8192)",
)
# Logging configuration
parser.add_argument(
"--log-level",
default="INFO",
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Logging level (default: INFO)",
)
return parser.parse_args()
class DocumentManager:
"""Handles document operations and tracking"""
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
self.input_dir = Path(input_dir)
self.supported_extensions = supported_extensions
self.indexed_files = set()
# Create input directory if it doesn't exist
self.input_dir.mkdir(parents=True, exist_ok=True)
def scan_directory(self) -> List[Path]:
"""Scan input directory for new files"""
new_files = []
for ext in self.supported_extensions:
for file_path in self.input_dir.rglob(f"*{ext}"):
if file_path not in self.indexed_files:
new_files.append(file_path)
return new_files
def mark_as_indexed(self, file_path: Path):
"""Mark a file as indexed"""
self.indexed_files.add(file_path)
def is_supported_file(self, filename: str) -> bool:
"""Check if file type is supported"""
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
# Pydantic models
class SearchMode(str, Enum):
naive = "naive"
local = "local"
global_ = "global"
hybrid = "hybrid"
class QueryRequest(BaseModel):
query: str
mode: SearchMode = SearchMode.hybrid
stream: bool = False
class QueryResponse(BaseModel):
response: str
class InsertTextRequest(BaseModel):
text: str
description: Optional[str] = None
class InsertResponse(BaseModel):
status: str
message: str
document_count: int
async def get_embedding_dim(embedding_model: str) -> int:
"""Get embedding dimensions for the specified model"""
test_text = ["This is a test sentence."]
embedding = await openai_embedding(test_text, model=embedding_model)
return embedding.shape[1]
def create_app(args):
# Setup logging
logging.basicConfig(
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
)
# Initialize FastAPI app
app = FastAPI(
title="LightRAG API",
description="API for querying text using LightRAG with OpenAI integration",
)
# Create working directory if it doesn't exist
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
# Initialize document manager
doc_manager = DocumentManager(args.input_dir)
# Get embedding dimensions
embedding_dim = asyncio.run(get_embedding_dim(args.embedding_model))
async def async_openai_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
):
"""Async wrapper for OpenAI completion"""
return await openai_complete_if_cache(
args.model,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
# Initialize RAG with OpenAI configuration
rag = LightRAG(
working_dir=args.working_dir,
llm_model_func=async_openai_complete,
llm_model_name=args.model,
llm_model_max_token_size=args.max_tokens,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dim,
max_token_size=args.max_embed_tokens,
func=lambda texts: openai_embedding(texts, model=args.embedding_model),
),
)
@app.on_event("startup")
async def startup_event():
"""Index all files in input directory during startup"""
try:
new_files = doc_manager.scan_directory()
for file_path in new_files:
try:
# Use async file reading
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
content = await f.read()
# Use the async version of insert directly
await rag.ainsert(content)
doc_manager.mark_as_indexed(file_path)
logging.info(f"Indexed file: {file_path}")
except Exception as e:
trace_exception(e)
logging.error(f"Error indexing file {file_path}: {str(e)}")
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
except Exception as e:
logging.error(f"Error during startup indexing: {str(e)}")
@app.post("/documents/scan")
async def scan_for_new_documents():
"""Manually trigger scanning for new documents"""
try:
new_files = doc_manager.scan_directory()
indexed_count = 0
for file_path in new_files:
try:
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
rag.insert(content)
doc_manager.mark_as_indexed(file_path)
indexed_count += 1
except Exception as e:
logging.error(f"Error indexing file {file_path}: {str(e)}")
return {
"status": "success",
"indexed_count": indexed_count,
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/documents/upload")
async def upload_to_input_dir(file: UploadFile = File(...)):
"""Upload a file to the input directory"""
try:
if not doc_manager.is_supported_file(file.filename):
raise HTTPException(
status_code=400,
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
)
file_path = doc_manager.input_dir / file.filename
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Immediately index the uploaded file
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
rag.insert(content)
doc_manager.mark_as_indexed(file_path)
return {
"status": "success",
"message": f"File uploaded and indexed: {file.filename}",
"total_documents": len(doc_manager.indexed_files),
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/query", response_model=QueryResponse)
async def query_text(request: QueryRequest):
try:
response = await rag.aquery(
request.query,
param=QueryParam(mode=request.mode, stream=request.stream),
)
if request.stream:
result = ""
async for chunk in response:
result += chunk
return QueryResponse(response=result)
else:
return QueryResponse(response=response)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/query/stream")
async def query_text_stream(request: QueryRequest):
try:
response = rag.query(
request.query, param=QueryParam(mode=request.mode, stream=True)
)
async def stream_generator():
async for chunk in response:
yield chunk
return stream_generator()
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/documents/text", response_model=InsertResponse)
async def insert_text(request: InsertTextRequest):
try:
rag.insert(request.text)
return InsertResponse(
status="success",
message="Text successfully inserted",
document_count=len(rag),
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/documents/file", response_model=InsertResponse)
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
try:
content = await file.read()
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
rag.insert(text)
else:
raise HTTPException(
status_code=400,
detail="Unsupported file type. Only .txt and .md files are supported",
)
return InsertResponse(
status="success",
message=f"File '{file.filename}' successfully inserted",
document_count=len(rag),
)
except UnicodeDecodeError:
raise HTTPException(status_code=400, detail="File encoding not supported")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/documents/batch", response_model=InsertResponse)
async def insert_batch(files: List[UploadFile] = File(...)):
try:
inserted_count = 0
failed_files = []
for file in files:
try:
content = await file.read()
if file.filename.endswith((".txt", ".md")):
text = content.decode("utf-8")
rag.insert(text)
inserted_count += 1
else:
failed_files.append(f"{file.filename} (unsupported type)")
except Exception as e:
failed_files.append(f"{file.filename} ({str(e)})")
status_message = f"Successfully inserted {inserted_count} documents"
if failed_files:
status_message += f". Failed files: {', '.join(failed_files)}"
return InsertResponse(
status="success" if inserted_count > 0 else "partial_success",
message=status_message,
document_count=len(rag),
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.delete("/documents", response_model=InsertResponse)
async def clear_documents():
try:
rag.text_chunks = []
rag.entities_vdb = None
rag.relationships_vdb = None
return InsertResponse(
status="success",
message="All documents cleared successfully",
document_count=0,
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def get_status():
"""Get current system status"""
return {
"status": "healthy",
"working_directory": str(args.working_dir),
"input_directory": str(args.input_dir),
"indexed_files": len(doc_manager.indexed_files),
"configuration": {
"model": args.model,
"embedding_model": args.embedding_model,
"max_tokens": args.max_tokens,
"embedding_dim": embedding_dim,
},
}
return app
def main():
args = parse_args()
import uvicorn
app = create_app(args)
uvicorn.run(app, host=args.host, port=args.port)
if __name__ == "__main__":
main()