mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
409 lines
13 KiB
Python
409 lines
13 KiB
Python
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
|
|
from pydantic import BaseModel
|
|
import asyncio
|
|
import logging
|
|
import argparse
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
|
from lightrag.utils import EmbeddingFunc
|
|
from typing import Optional, List
|
|
from enum import Enum
|
|
from pathlib import Path
|
|
import shutil
|
|
import aiofiles
|
|
from ascii_colors import trace_exception
|
|
import nest_asyncio
|
|
|
|
# Apply nest_asyncio to solve event loop issues
|
|
nest_asyncio.apply()
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description="LightRAG FastAPI Server with OpenAI integration"
|
|
)
|
|
|
|
# Server configuration
|
|
parser.add_argument(
|
|
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
|
|
)
|
|
parser.add_argument(
|
|
"--port", type=int, default=9621, help="Server port (default: 9621)"
|
|
)
|
|
|
|
# Directory configuration
|
|
parser.add_argument(
|
|
"--working-dir",
|
|
default="./rag_storage",
|
|
help="Working directory for RAG storage (default: ./rag_storage)",
|
|
)
|
|
parser.add_argument(
|
|
"--input-dir",
|
|
default="./inputs",
|
|
help="Directory containing input documents (default: ./inputs)",
|
|
)
|
|
|
|
# Model configuration
|
|
parser.add_argument(
|
|
"--model", default="gpt-4", help="OpenAI model name (default: gpt-4)"
|
|
)
|
|
parser.add_argument(
|
|
"--embedding-model",
|
|
default="text-embedding-3-large",
|
|
help="OpenAI embedding model (default: text-embedding-3-large)",
|
|
)
|
|
|
|
# RAG configuration
|
|
parser.add_argument(
|
|
"--max-tokens",
|
|
type=int,
|
|
default=32768,
|
|
help="Maximum token size (default: 32768)",
|
|
)
|
|
parser.add_argument(
|
|
"--max-embed-tokens",
|
|
type=int,
|
|
default=8192,
|
|
help="Maximum embedding token size (default: 8192)",
|
|
)
|
|
|
|
# Logging configuration
|
|
parser.add_argument(
|
|
"--log-level",
|
|
default="INFO",
|
|
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
|
|
help="Logging level (default: INFO)",
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
class DocumentManager:
|
|
"""Handles document operations and tracking"""
|
|
|
|
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
|
|
self.input_dir = Path(input_dir)
|
|
self.supported_extensions = supported_extensions
|
|
self.indexed_files = set()
|
|
|
|
# Create input directory if it doesn't exist
|
|
self.input_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
def scan_directory(self) -> List[Path]:
|
|
"""Scan input directory for new files"""
|
|
new_files = []
|
|
for ext in self.supported_extensions:
|
|
for file_path in self.input_dir.rglob(f"*{ext}"):
|
|
if file_path not in self.indexed_files:
|
|
new_files.append(file_path)
|
|
return new_files
|
|
|
|
def mark_as_indexed(self, file_path: Path):
|
|
"""Mark a file as indexed"""
|
|
self.indexed_files.add(file_path)
|
|
|
|
def is_supported_file(self, filename: str) -> bool:
|
|
"""Check if file type is supported"""
|
|
return any(filename.lower().endswith(ext) for ext in self.supported_extensions)
|
|
|
|
|
|
# Pydantic models
|
|
class SearchMode(str, Enum):
|
|
naive = "naive"
|
|
local = "local"
|
|
global_ = "global"
|
|
hybrid = "hybrid"
|
|
|
|
|
|
class QueryRequest(BaseModel):
|
|
query: str
|
|
mode: SearchMode = SearchMode.hybrid
|
|
stream: bool = False
|
|
|
|
|
|
class QueryResponse(BaseModel):
|
|
response: str
|
|
|
|
|
|
class InsertTextRequest(BaseModel):
|
|
text: str
|
|
description: Optional[str] = None
|
|
|
|
|
|
class InsertResponse(BaseModel):
|
|
status: str
|
|
message: str
|
|
document_count: int
|
|
|
|
|
|
async def get_embedding_dim(embedding_model: str) -> int:
|
|
"""Get embedding dimensions for the specified model"""
|
|
test_text = ["This is a test sentence."]
|
|
embedding = await openai_embedding(test_text, model=embedding_model)
|
|
return embedding.shape[1]
|
|
|
|
|
|
def create_app(args):
|
|
# Setup logging
|
|
logging.basicConfig(
|
|
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
|
|
)
|
|
|
|
# Initialize FastAPI app
|
|
app = FastAPI(
|
|
title="LightRAG API",
|
|
description="API for querying text using LightRAG with OpenAI integration",
|
|
)
|
|
|
|
# Create working directory if it doesn't exist
|
|
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
# Initialize document manager
|
|
doc_manager = DocumentManager(args.input_dir)
|
|
|
|
# Get embedding dimensions
|
|
embedding_dim = asyncio.run(get_embedding_dim(args.embedding_model))
|
|
|
|
async def async_openai_complete(
|
|
prompt, system_prompt=None, history_messages=[], **kwargs
|
|
):
|
|
"""Async wrapper for OpenAI completion"""
|
|
return await openai_complete_if_cache(
|
|
args.model,
|
|
prompt,
|
|
system_prompt=system_prompt,
|
|
history_messages=history_messages,
|
|
**kwargs,
|
|
)
|
|
|
|
# Initialize RAG with OpenAI configuration
|
|
rag = LightRAG(
|
|
working_dir=args.working_dir,
|
|
llm_model_func=async_openai_complete,
|
|
llm_model_name=args.model,
|
|
llm_model_max_token_size=args.max_tokens,
|
|
embedding_func=EmbeddingFunc(
|
|
embedding_dim=embedding_dim,
|
|
max_token_size=args.max_embed_tokens,
|
|
func=lambda texts: openai_embedding(texts, model=args.embedding_model),
|
|
),
|
|
)
|
|
|
|
@app.on_event("startup")
|
|
async def startup_event():
|
|
"""Index all files in input directory during startup"""
|
|
try:
|
|
new_files = doc_manager.scan_directory()
|
|
for file_path in new_files:
|
|
try:
|
|
# Use async file reading
|
|
async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
|
|
content = await f.read()
|
|
# Use the async version of insert directly
|
|
await rag.ainsert(content)
|
|
doc_manager.mark_as_indexed(file_path)
|
|
logging.info(f"Indexed file: {file_path}")
|
|
except Exception as e:
|
|
trace_exception(e)
|
|
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
|
|
|
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")
|
|
|
|
except Exception as e:
|
|
logging.error(f"Error during startup indexing: {str(e)}")
|
|
|
|
@app.post("/documents/scan")
|
|
async def scan_for_new_documents():
|
|
"""Manually trigger scanning for new documents"""
|
|
try:
|
|
new_files = doc_manager.scan_directory()
|
|
indexed_count = 0
|
|
|
|
for file_path in new_files:
|
|
try:
|
|
with open(file_path, "r", encoding="utf-8") as f:
|
|
content = f.read()
|
|
rag.insert(content)
|
|
doc_manager.mark_as_indexed(file_path)
|
|
indexed_count += 1
|
|
except Exception as e:
|
|
logging.error(f"Error indexing file {file_path}: {str(e)}")
|
|
|
|
return {
|
|
"status": "success",
|
|
"indexed_count": indexed_count,
|
|
"total_documents": len(doc_manager.indexed_files),
|
|
}
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
@app.post("/documents/upload")
|
|
async def upload_to_input_dir(file: UploadFile = File(...)):
|
|
"""Upload a file to the input directory"""
|
|
try:
|
|
if not doc_manager.is_supported_file(file.filename):
|
|
raise HTTPException(
|
|
status_code=400,
|
|
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
|
|
)
|
|
|
|
file_path = doc_manager.input_dir / file.filename
|
|
with open(file_path, "wb") as buffer:
|
|
shutil.copyfileobj(file.file, buffer)
|
|
|
|
# Immediately index the uploaded file
|
|
with open(file_path, "r", encoding="utf-8") as f:
|
|
content = f.read()
|
|
rag.insert(content)
|
|
doc_manager.mark_as_indexed(file_path)
|
|
|
|
return {
|
|
"status": "success",
|
|
"message": f"File uploaded and indexed: {file.filename}",
|
|
"total_documents": len(doc_manager.indexed_files),
|
|
}
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
@app.post("/query", response_model=QueryResponse)
|
|
async def query_text(request: QueryRequest):
|
|
try:
|
|
response = await rag.aquery(
|
|
request.query,
|
|
param=QueryParam(mode=request.mode, stream=request.stream),
|
|
)
|
|
|
|
if request.stream:
|
|
result = ""
|
|
async for chunk in response:
|
|
result += chunk
|
|
return QueryResponse(response=result)
|
|
else:
|
|
return QueryResponse(response=response)
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
@app.post("/query/stream")
|
|
async def query_text_stream(request: QueryRequest):
|
|
try:
|
|
response = rag.query(
|
|
request.query, param=QueryParam(mode=request.mode, stream=True)
|
|
)
|
|
|
|
async def stream_generator():
|
|
async for chunk in response:
|
|
yield chunk
|
|
|
|
return stream_generator()
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
@app.post("/documents/text", response_model=InsertResponse)
|
|
async def insert_text(request: InsertTextRequest):
|
|
try:
|
|
rag.insert(request.text)
|
|
return InsertResponse(
|
|
status="success",
|
|
message="Text successfully inserted",
|
|
document_count=len(rag),
|
|
)
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
@app.post("/documents/file", response_model=InsertResponse)
|
|
async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
|
|
try:
|
|
content = await file.read()
|
|
|
|
if file.filename.endswith((".txt", ".md")):
|
|
text = content.decode("utf-8")
|
|
rag.insert(text)
|
|
else:
|
|
raise HTTPException(
|
|
status_code=400,
|
|
detail="Unsupported file type. Only .txt and .md files are supported",
|
|
)
|
|
|
|
return InsertResponse(
|
|
status="success",
|
|
message=f"File '{file.filename}' successfully inserted",
|
|
document_count=len(rag),
|
|
)
|
|
except UnicodeDecodeError:
|
|
raise HTTPException(status_code=400, detail="File encoding not supported")
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
@app.post("/documents/batch", response_model=InsertResponse)
|
|
async def insert_batch(files: List[UploadFile] = File(...)):
|
|
try:
|
|
inserted_count = 0
|
|
failed_files = []
|
|
|
|
for file in files:
|
|
try:
|
|
content = await file.read()
|
|
if file.filename.endswith((".txt", ".md")):
|
|
text = content.decode("utf-8")
|
|
rag.insert(text)
|
|
inserted_count += 1
|
|
else:
|
|
failed_files.append(f"{file.filename} (unsupported type)")
|
|
except Exception as e:
|
|
failed_files.append(f"{file.filename} ({str(e)})")
|
|
|
|
status_message = f"Successfully inserted {inserted_count} documents"
|
|
if failed_files:
|
|
status_message += f". Failed files: {', '.join(failed_files)}"
|
|
|
|
return InsertResponse(
|
|
status="success" if inserted_count > 0 else "partial_success",
|
|
message=status_message,
|
|
document_count=len(rag),
|
|
)
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
@app.delete("/documents", response_model=InsertResponse)
|
|
async def clear_documents():
|
|
try:
|
|
rag.text_chunks = []
|
|
rag.entities_vdb = None
|
|
rag.relationships_vdb = None
|
|
return InsertResponse(
|
|
status="success",
|
|
message="All documents cleared successfully",
|
|
document_count=0,
|
|
)
|
|
except Exception as e:
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
@app.get("/health")
|
|
async def get_status():
|
|
"""Get current system status"""
|
|
return {
|
|
"status": "healthy",
|
|
"working_directory": str(args.working_dir),
|
|
"input_directory": str(args.input_dir),
|
|
"indexed_files": len(doc_manager.indexed_files),
|
|
"configuration": {
|
|
"model": args.model,
|
|
"embedding_model": args.embedding_model,
|
|
"max_tokens": args.max_tokens,
|
|
"embedding_dim": embedding_dim,
|
|
},
|
|
}
|
|
|
|
return app
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
import uvicorn
|
|
|
|
app = create_app(args)
|
|
uvicorn.run(app, host=args.host, port=args.port)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|