mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-10-30 17:29:34 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			337 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			337 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| Configs for the LightRAG API.
 | |
| """
 | |
| 
 | |
| import os
 | |
| import argparse
 | |
| import logging
 | |
| from dotenv import load_dotenv
 | |
| 
 | |
| # use the .env that is inside the current folder
 | |
| # allows to use different .env file for each lightrag instance
 | |
| # the OS environment variables take precedence over the .env file
 | |
| load_dotenv(dotenv_path=".env", override=False)
 | |
| 
 | |
| 
 | |
| class OllamaServerInfos:
 | |
|     # Constants for emulated Ollama model information
 | |
|     LIGHTRAG_NAME = "lightrag"
 | |
|     LIGHTRAG_TAG = os.getenv("OLLAMA_EMULATING_MODEL_TAG", "latest")
 | |
|     LIGHTRAG_MODEL = f"{LIGHTRAG_NAME}:{LIGHTRAG_TAG}"
 | |
|     LIGHTRAG_SIZE = 7365960935  # it's a dummy value
 | |
|     LIGHTRAG_CREATED_AT = "2024-01-15T00:00:00Z"
 | |
|     LIGHTRAG_DIGEST = "sha256:lightrag"
 | |
| 
 | |
| 
 | |
| ollama_server_infos = OllamaServerInfos()
 | |
| 
 | |
| 
 | |
| class DefaultRAGStorageConfig:
 | |
|     KV_STORAGE = "JsonKVStorage"
 | |
|     VECTOR_STORAGE = "NanoVectorDBStorage"
 | |
|     GRAPH_STORAGE = "NetworkXStorage"
 | |
|     DOC_STATUS_STORAGE = "JsonDocStatusStorage"
 | |
| 
 | |
| 
 | |
| def get_default_host(binding_type: str) -> str:
 | |
|     default_hosts = {
 | |
|         "ollama": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"),
 | |
|         "lollms": os.getenv("LLM_BINDING_HOST", "http://localhost:9600"),
 | |
|         "azure_openai": os.getenv("AZURE_OPENAI_ENDPOINT", "https://api.openai.com/v1"),
 | |
|         "openai": os.getenv("LLM_BINDING_HOST", "https://api.openai.com/v1"),
 | |
|     }
 | |
|     return default_hosts.get(
 | |
|         binding_type, os.getenv("LLM_BINDING_HOST", "http://localhost:11434")
 | |
|     )  # fallback to ollama if unknown
 | |
| 
 | |
| 
 | |
| def get_env_value(env_key: str, default: any, value_type: type = str) -> any:
 | |
|     """
 | |
|     Get value from environment variable with type conversion
 | |
| 
 | |
|     Args:
 | |
|         env_key (str): Environment variable key
 | |
|         default (any): Default value if env variable is not set
 | |
|         value_type (type): Type to convert the value to
 | |
| 
 | |
|     Returns:
 | |
|         any: Converted value from environment or default
 | |
|     """
 | |
|     value = os.getenv(env_key)
 | |
|     if value is None:
 | |
|         return default
 | |
| 
 | |
|     if value_type is bool:
 | |
|         return value.lower() in ("true", "1", "yes", "t", "on")
 | |
|     try:
 | |
|         return value_type(value)
 | |
|     except ValueError:
 | |
|         return default
 | |
| 
 | |
| 
 | |
| def parse_args() -> argparse.Namespace:
 | |
|     """
 | |
|     Parse command line arguments with environment variable fallback
 | |
| 
 | |
|     Args:
 | |
|         is_uvicorn_mode: Whether running under uvicorn mode
 | |
| 
 | |
|     Returns:
 | |
|         argparse.Namespace: Parsed arguments
 | |
|     """
 | |
| 
 | |
|     parser = argparse.ArgumentParser(
 | |
|         description="LightRAG FastAPI Server with separate working and input directories"
 | |
|     )
 | |
| 
 | |
|     # Server configuration
 | |
|     parser.add_argument(
 | |
|         "--host",
 | |
|         default=get_env_value("HOST", "0.0.0.0"),
 | |
|         help="Server host (default: from env or 0.0.0.0)",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--port",
 | |
|         type=int,
 | |
|         default=get_env_value("PORT", 9621, int),
 | |
|         help="Server port (default: from env or 9621)",
 | |
|     )
 | |
| 
 | |
|     # Directory configuration
 | |
|     parser.add_argument(
 | |
|         "--working-dir",
 | |
|         default=get_env_value("WORKING_DIR", "./rag_storage"),
 | |
|         help="Working directory for RAG storage (default: from env or ./rag_storage)",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--input-dir",
 | |
|         default=get_env_value("INPUT_DIR", "./inputs"),
 | |
|         help="Directory containing input documents (default: from env or ./inputs)",
 | |
|     )
 | |
| 
 | |
|     def timeout_type(value):
 | |
|         if value is None:
 | |
|             return 150
 | |
|         if value is None or value == "None":
 | |
|             return None
 | |
|         return int(value)
 | |
| 
 | |
|     parser.add_argument(
 | |
|         "--timeout",
 | |
|         default=get_env_value("TIMEOUT", None, timeout_type),
 | |
|         type=timeout_type,
 | |
|         help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout",
 | |
|     )
 | |
| 
 | |
|     # RAG configuration
 | |
|     parser.add_argument(
 | |
|         "--max-async",
 | |
|         type=int,
 | |
|         default=get_env_value("MAX_ASYNC", 4, int),
 | |
|         help="Maximum async operations (default: from env or 4)",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--max-tokens",
 | |
|         type=int,
 | |
|         default=get_env_value("MAX_TOKENS", 32768, int),
 | |
|         help="Maximum token size (default: from env or 32768)",
 | |
|     )
 | |
| 
 | |
|     # Logging configuration
 | |
|     parser.add_argument(
 | |
|         "--log-level",
 | |
|         default=get_env_value("LOG_LEVEL", "INFO"),
 | |
|         choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
 | |
|         help="Logging level (default: from env or INFO)",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--verbose",
 | |
|         action="store_true",
 | |
|         default=get_env_value("VERBOSE", False, bool),
 | |
|         help="Enable verbose debug output(only valid for DEBUG log-level)",
 | |
|     )
 | |
| 
 | |
|     parser.add_argument(
 | |
|         "--key",
 | |
|         type=str,
 | |
|         default=get_env_value("LIGHTRAG_API_KEY", None),
 | |
|         help="API key for authentication. This protects lightrag server against unauthorized access",
 | |
|     )
 | |
| 
 | |
|     # Optional https parameters
 | |
|     parser.add_argument(
 | |
|         "--ssl",
 | |
|         action="store_true",
 | |
|         default=get_env_value("SSL", False, bool),
 | |
|         help="Enable HTTPS (default: from env or False)",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--ssl-certfile",
 | |
|         default=get_env_value("SSL_CERTFILE", None),
 | |
|         help="Path to SSL certificate file (required if --ssl is enabled)",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--ssl-keyfile",
 | |
|         default=get_env_value("SSL_KEYFILE", None),
 | |
|         help="Path to SSL private key file (required if --ssl is enabled)",
 | |
|     )
 | |
| 
 | |
|     parser.add_argument(
 | |
|         "--history-turns",
 | |
|         type=int,
 | |
|         default=get_env_value("HISTORY_TURNS", 3, int),
 | |
|         help="Number of conversation history turns to include (default: from env or 3)",
 | |
|     )
 | |
| 
 | |
|     # Search parameters
 | |
|     parser.add_argument(
 | |
|         "--top-k",
 | |
|         type=int,
 | |
|         default=get_env_value("TOP_K", 60, int),
 | |
|         help="Number of most similar results to return (default: from env or 60)",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--cosine-threshold",
 | |
|         type=float,
 | |
|         default=get_env_value("COSINE_THRESHOLD", 0.2, float),
 | |
|         help="Cosine similarity threshold (default: from env or 0.4)",
 | |
|     )
 | |
| 
 | |
|     # Ollama model name
 | |
|     parser.add_argument(
 | |
|         "--simulated-model-name",
 | |
|         type=str,
 | |
|         default=get_env_value(
 | |
|             "SIMULATED_MODEL_NAME", ollama_server_infos.LIGHTRAG_MODEL
 | |
|         ),
 | |
|         help="Number of conversation history turns to include (default: from env or 3)",
 | |
|     )
 | |
| 
 | |
|     # Namespace
 | |
|     parser.add_argument(
 | |
|         "--namespace-prefix",
 | |
|         type=str,
 | |
|         default=get_env_value("NAMESPACE_PREFIX", ""),
 | |
|         help="Prefix of the namespace",
 | |
|     )
 | |
| 
 | |
|     parser.add_argument(
 | |
|         "--auto-scan-at-startup",
 | |
|         action="store_true",
 | |
|         default=False,
 | |
|         help="Enable automatic scanning when the program starts",
 | |
|     )
 | |
| 
 | |
|     # Server workers configuration
 | |
|     parser.add_argument(
 | |
|         "--workers",
 | |
|         type=int,
 | |
|         default=get_env_value("WORKERS", 1, int),
 | |
|         help="Number of worker processes (default: from env or 1)",
 | |
|     )
 | |
| 
 | |
|     # LLM and embedding bindings
 | |
|     parser.add_argument(
 | |
|         "--llm-binding",
 | |
|         type=str,
 | |
|         default=get_env_value("LLM_BINDING", "ollama"),
 | |
|         choices=["lollms", "ollama", "openai", "openai-ollama", "azure_openai"],
 | |
|         help="LLM binding type (default: from env or ollama)",
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--embedding-binding",
 | |
|         type=str,
 | |
|         default=get_env_value("EMBEDDING_BINDING", "ollama"),
 | |
|         choices=["lollms", "ollama", "openai", "azure_openai"],
 | |
|         help="Embedding binding type (default: from env or ollama)",
 | |
|     )
 | |
| 
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     # convert relative path to absolute path
 | |
|     args.working_dir = os.path.abspath(args.working_dir)
 | |
|     args.input_dir = os.path.abspath(args.input_dir)
 | |
| 
 | |
|     # Inject storage configuration from environment variables
 | |
|     args.kv_storage = get_env_value(
 | |
|         "LIGHTRAG_KV_STORAGE", DefaultRAGStorageConfig.KV_STORAGE
 | |
|     )
 | |
|     args.doc_status_storage = get_env_value(
 | |
|         "LIGHTRAG_DOC_STATUS_STORAGE", DefaultRAGStorageConfig.DOC_STATUS_STORAGE
 | |
|     )
 | |
|     args.graph_storage = get_env_value(
 | |
|         "LIGHTRAG_GRAPH_STORAGE", DefaultRAGStorageConfig.GRAPH_STORAGE
 | |
|     )
 | |
|     args.vector_storage = get_env_value(
 | |
|         "LIGHTRAG_VECTOR_STORAGE", DefaultRAGStorageConfig.VECTOR_STORAGE
 | |
|     )
 | |
| 
 | |
|     # Get MAX_PARALLEL_INSERT from environment
 | |
|     args.max_parallel_insert = get_env_value("MAX_PARALLEL_INSERT", 2, int)
 | |
| 
 | |
|     # Handle openai-ollama special case
 | |
|     if args.llm_binding == "openai-ollama":
 | |
|         args.llm_binding = "openai"
 | |
|         args.embedding_binding = "ollama"
 | |
| 
 | |
|     args.llm_binding_host = get_env_value(
 | |
|         "LLM_BINDING_HOST", get_default_host(args.llm_binding)
 | |
|     )
 | |
|     args.embedding_binding_host = get_env_value(
 | |
|         "EMBEDDING_BINDING_HOST", get_default_host(args.embedding_binding)
 | |
|     )
 | |
|     args.llm_binding_api_key = get_env_value("LLM_BINDING_API_KEY", None)
 | |
|     args.embedding_binding_api_key = get_env_value("EMBEDDING_BINDING_API_KEY", "")
 | |
| 
 | |
|     # Inject model configuration
 | |
|     args.llm_model = get_env_value("LLM_MODEL", "mistral-nemo:latest")
 | |
|     args.embedding_model = get_env_value("EMBEDDING_MODEL", "bge-m3:latest")
 | |
|     args.embedding_dim = get_env_value("EMBEDDING_DIM", 1024, int)
 | |
|     args.max_embed_tokens = get_env_value("MAX_EMBED_TOKENS", 8192, int)
 | |
| 
 | |
|     # Inject chunk configuration
 | |
|     args.chunk_size = get_env_value("CHUNK_SIZE", 1200, int)
 | |
|     args.chunk_overlap_size = get_env_value("CHUNK_OVERLAP_SIZE", 100, int)
 | |
| 
 | |
|     # Inject LLM cache configuration
 | |
|     args.enable_llm_cache_for_extract = get_env_value(
 | |
|         "ENABLE_LLM_CACHE_FOR_EXTRACT", True, bool
 | |
|     )
 | |
|     args.enable_llm_cache = get_env_value("ENABLE_LLM_CACHE", True, bool)
 | |
| 
 | |
|     # Inject LLM temperature configuration
 | |
|     args.temperature = get_env_value("TEMPERATURE", 0.5, float)
 | |
| 
 | |
|     # Select Document loading tool (DOCLING, DEFAULT)
 | |
|     args.document_loading_engine = get_env_value("DOCUMENT_LOADING_ENGINE", "DEFAULT")
 | |
| 
 | |
|     # Add environment variables that were previously read directly
 | |
|     args.cors_origins = get_env_value("CORS_ORIGINS", "*")
 | |
|     args.summary_language = get_env_value("SUMMARY_LANGUAGE", "en")
 | |
|     args.whitelist_paths = get_env_value("WHITELIST_PATHS", "/health,/api/*")
 | |
| 
 | |
|     # For JWT Auth
 | |
|     args.auth_accounts = get_env_value("AUTH_ACCOUNTS", "")
 | |
|     args.token_secret = get_env_value("TOKEN_SECRET", "lightrag-jwt-default-secret")
 | |
|     args.token_expire_hours = get_env_value("TOKEN_EXPIRE_HOURS", 48, int)
 | |
|     args.guest_token_expire_hours = get_env_value("GUEST_TOKEN_EXPIRE_HOURS", 24, int)
 | |
|     args.jwt_algorithm = get_env_value("JWT_ALGORITHM", "HS256")
 | |
| 
 | |
|     ollama_server_infos.LIGHTRAG_MODEL = args.simulated_model_name
 | |
| 
 | |
|     return args
 | |
| 
 | |
| 
 | |
| def update_uvicorn_mode_config():
 | |
|     # If in uvicorn mode and workers > 1, force it to 1 and log warning
 | |
|     if global_args.workers > 1:
 | |
|         original_workers = global_args.workers
 | |
|         global_args.workers = 1
 | |
|         # Log warning directly here
 | |
|         logging.warning(
 | |
|             f"In uvicorn mode, workers parameter was set to {original_workers}. Forcing workers=1"
 | |
|         )
 | |
| 
 | |
| 
 | |
| global_args = parse_args()
 | 
