mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-11-21 04:23:52 +00:00
425 lines
15 KiB
Python
425 lines
15 KiB
Python
"""
|
|
Configs for the LightRAG API.
|
|
"""
|
|
|
|
import os
|
|
import argparse
|
|
import logging
|
|
from dotenv import load_dotenv
|
|
from lightrag.utils import get_env_value
|
|
from lightrag.llm.binding_options import (
|
|
OllamaEmbeddingOptions,
|
|
OllamaLLMOptions,
|
|
OpenAILLMOptions,
|
|
)
|
|
from lightrag.base import OllamaServerInfos
|
|
import sys
|
|
|
|
from lightrag.constants import (
|
|
DEFAULT_WOKERS,
|
|
DEFAULT_TIMEOUT,
|
|
DEFAULT_TOP_K,
|
|
DEFAULT_CHUNK_TOP_K,
|
|
DEFAULT_HISTORY_TURNS,
|
|
DEFAULT_MAX_ENTITY_TOKENS,
|
|
DEFAULT_MAX_RELATION_TOKENS,
|
|
DEFAULT_MAX_TOTAL_TOKENS,
|
|
DEFAULT_COSINE_THRESHOLD,
|
|
DEFAULT_RELATED_CHUNK_NUMBER,
|
|
DEFAULT_MIN_RERANK_SCORE,
|
|
DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE,
|
|
DEFAULT_MAX_ASYNC,
|
|
DEFAULT_SUMMARY_MAX_TOKENS,
|
|
DEFAULT_SUMMARY_LENGTH_RECOMMENDED,
|
|
DEFAULT_SUMMARY_CONTEXT_SIZE,
|
|
DEFAULT_SUMMARY_LANGUAGE,
|
|
DEFAULT_EMBEDDING_FUNC_MAX_ASYNC,
|
|
DEFAULT_EMBEDDING_BATCH_NUM,
|
|
DEFAULT_OLLAMA_MODEL_NAME,
|
|
DEFAULT_OLLAMA_MODEL_TAG,
|
|
DEFAULT_RERANK_BINDING,
|
|
DEFAULT_ENTITY_TYPES,
|
|
)
|
|
|
|
# use the .env that is inside the current folder
|
|
# allows to use different .env file for each lightrag instance
|
|
# the OS environment variables take precedence over the .env file
|
|
load_dotenv(dotenv_path=".env", override=False)
|
|
|
|
|
|
ollama_server_infos = OllamaServerInfos()
|
|
|
|
|
|
class DefaultRAGStorageConfig:
|
|
KV_STORAGE = "JsonKVStorage"
|
|
VECTOR_STORAGE = "NanoVectorDBStorage"
|
|
GRAPH_STORAGE = "NetworkXStorage"
|
|
DOC_STATUS_STORAGE = "JsonDocStatusStorage"
|
|
|
|
|
|
def get_default_host(binding_type: str) -> str:
|
|
default_hosts = {
|
|
"ollama": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"),
|
|
"lollms": os.getenv("LLM_BINDING_HOST", "http://localhost:9600"),
|
|
"azure_openai": os.getenv("AZURE_OPENAI_ENDPOINT", "https://api.openai.com/v1"),
|
|
"openai": os.getenv("LLM_BINDING_HOST", "https://api.openai.com/v1"),
|
|
}
|
|
return default_hosts.get(
|
|
binding_type, os.getenv("LLM_BINDING_HOST", "http://localhost:11434")
|
|
) # fallback to ollama if unknown
|
|
|
|
|
|
def parse_args() -> argparse.Namespace:
|
|
"""
|
|
Parse command line arguments with environment variable fallback
|
|
|
|
Args:
|
|
is_uvicorn_mode: Whether running under uvicorn mode
|
|
|
|
Returns:
|
|
argparse.Namespace: Parsed arguments
|
|
"""
|
|
|
|
parser = argparse.ArgumentParser(description="LightRAG API Server")
|
|
|
|
# Server configuration
|
|
parser.add_argument(
|
|
"--host",
|
|
default=get_env_value("HOST", "0.0.0.0"),
|
|
help="Server host (default: from env or 0.0.0.0)",
|
|
)
|
|
parser.add_argument(
|
|
"--port",
|
|
type=int,
|
|
default=get_env_value("PORT", 9621, int),
|
|
help="Server port (default: from env or 9621)",
|
|
)
|
|
|
|
# Directory configuration
|
|
parser.add_argument(
|
|
"--working-dir",
|
|
default=get_env_value("WORKING_DIR", "./rag_storage"),
|
|
help="Working directory for RAG storage (default: from env or ./rag_storage)",
|
|
)
|
|
parser.add_argument(
|
|
"--input-dir",
|
|
default=get_env_value("INPUT_DIR", "./inputs"),
|
|
help="Directory containing input documents (default: from env or ./inputs)",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--timeout",
|
|
default=get_env_value("TIMEOUT", DEFAULT_TIMEOUT, int, special_none=True),
|
|
type=int,
|
|
help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout",
|
|
)
|
|
|
|
# RAG configuration
|
|
parser.add_argument(
|
|
"--max-async",
|
|
type=int,
|
|
default=get_env_value("MAX_ASYNC", DEFAULT_MAX_ASYNC, int),
|
|
help=f"Maximum async operations (default: from env or {DEFAULT_MAX_ASYNC})",
|
|
)
|
|
parser.add_argument(
|
|
"--summary-max-tokens",
|
|
type=int,
|
|
default=get_env_value("SUMMARY_MAX_TOKENS", DEFAULT_SUMMARY_MAX_TOKENS, int),
|
|
help=f"Maximum token size for entity/relation summary(default: from env or {DEFAULT_SUMMARY_MAX_TOKENS})",
|
|
)
|
|
parser.add_argument(
|
|
"--summary-context-size",
|
|
type=int,
|
|
default=get_env_value(
|
|
"SUMMARY_CONTEXT_SIZE", DEFAULT_SUMMARY_CONTEXT_SIZE, int
|
|
),
|
|
help=f"LLM Summary Context size (default: from env or {DEFAULT_SUMMARY_CONTEXT_SIZE})",
|
|
)
|
|
parser.add_argument(
|
|
"--summary-length-recommended",
|
|
type=int,
|
|
default=get_env_value(
|
|
"SUMMARY_LENGTH_RECOMMENDED", DEFAULT_SUMMARY_LENGTH_RECOMMENDED, int
|
|
),
|
|
help=f"LLM Summary Context size (default: from env or {DEFAULT_SUMMARY_LENGTH_RECOMMENDED})",
|
|
)
|
|
|
|
# Logging configuration
|
|
parser.add_argument(
|
|
"--log-level",
|
|
default=get_env_value("LOG_LEVEL", "INFO"),
|
|
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
|
|
help="Logging level (default: from env or INFO)",
|
|
)
|
|
parser.add_argument(
|
|
"--verbose",
|
|
action="store_true",
|
|
default=get_env_value("VERBOSE", False, bool),
|
|
help="Enable verbose debug output(only valid for DEBUG log-level)",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--key",
|
|
type=str,
|
|
default=get_env_value("LIGHTRAG_API_KEY", None),
|
|
help="API key for authentication. This protects lightrag server against unauthorized access",
|
|
)
|
|
|
|
# Optional https parameters
|
|
parser.add_argument(
|
|
"--ssl",
|
|
action="store_true",
|
|
default=get_env_value("SSL", False, bool),
|
|
help="Enable HTTPS (default: from env or False)",
|
|
)
|
|
parser.add_argument(
|
|
"--ssl-certfile",
|
|
default=get_env_value("SSL_CERTFILE", None),
|
|
help="Path to SSL certificate file (required if --ssl is enabled)",
|
|
)
|
|
parser.add_argument(
|
|
"--ssl-keyfile",
|
|
default=get_env_value("SSL_KEYFILE", None),
|
|
help="Path to SSL private key file (required if --ssl is enabled)",
|
|
)
|
|
|
|
# Ollama model configuration
|
|
parser.add_argument(
|
|
"--simulated-model-name",
|
|
type=str,
|
|
default=get_env_value("OLLAMA_EMULATING_MODEL_NAME", DEFAULT_OLLAMA_MODEL_NAME),
|
|
help="Name for the simulated Ollama model (default: from env or lightrag)",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--simulated-model-tag",
|
|
type=str,
|
|
default=get_env_value("OLLAMA_EMULATING_MODEL_TAG", DEFAULT_OLLAMA_MODEL_TAG),
|
|
help="Tag for the simulated Ollama model (default: from env or latest)",
|
|
)
|
|
|
|
# Namespace
|
|
parser.add_argument(
|
|
"--workspace",
|
|
type=str,
|
|
default=get_env_value("WORKSPACE", ""),
|
|
help="Default workspace for all storage",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--auto-scan-at-startup",
|
|
action="store_true",
|
|
default=False,
|
|
help="Enable automatic scanning when the program starts",
|
|
)
|
|
|
|
# Server workers configuration
|
|
parser.add_argument(
|
|
"--workers",
|
|
type=int,
|
|
default=get_env_value("WORKERS", DEFAULT_WOKERS, int),
|
|
help="Number of worker processes (default: from env or 1)",
|
|
)
|
|
|
|
# LLM and embedding bindings
|
|
parser.add_argument(
|
|
"--llm-binding",
|
|
type=str,
|
|
default=get_env_value("LLM_BINDING", "ollama"),
|
|
choices=[
|
|
"lollms",
|
|
"ollama",
|
|
"openai",
|
|
"openai-ollama",
|
|
"azure_openai",
|
|
"aws_bedrock",
|
|
],
|
|
help="LLM binding type (default: from env or ollama)",
|
|
)
|
|
parser.add_argument(
|
|
"--embedding-binding",
|
|
type=str,
|
|
default=get_env_value("EMBEDDING_BINDING", "ollama"),
|
|
choices=["lollms", "ollama", "openai", "azure_openai", "aws_bedrock", "jina"],
|
|
help="Embedding binding type (default: from env or ollama)",
|
|
)
|
|
parser.add_argument(
|
|
"--rerank-binding",
|
|
type=str,
|
|
default=get_env_value("RERANK_BINDING", DEFAULT_RERANK_BINDING),
|
|
choices=["null", "cohere", "jina", "aliyun"],
|
|
help=f"Rerank binding type (default: from env or {DEFAULT_RERANK_BINDING})",
|
|
)
|
|
|
|
# Conditionally add binding options defined in binding_options module
|
|
# This will add command line arguments for all binding options (e.g., --ollama-embedding-num_ctx)
|
|
# and corresponding environment variables (e.g., OLLAMA_EMBEDDING_NUM_CTX)
|
|
if "--llm-binding" in sys.argv:
|
|
try:
|
|
idx = sys.argv.index("--llm-binding")
|
|
if idx + 1 < len(sys.argv) and sys.argv[idx + 1] == "ollama":
|
|
OllamaLLMOptions.add_args(parser)
|
|
except IndexError:
|
|
pass
|
|
elif os.environ.get("LLM_BINDING") == "ollama":
|
|
OllamaLLMOptions.add_args(parser)
|
|
|
|
if "--embedding-binding" in sys.argv:
|
|
try:
|
|
idx = sys.argv.index("--embedding-binding")
|
|
if idx + 1 < len(sys.argv) and sys.argv[idx + 1] == "ollama":
|
|
OllamaEmbeddingOptions.add_args(parser)
|
|
except IndexError:
|
|
pass
|
|
elif os.environ.get("EMBEDDING_BINDING") == "ollama":
|
|
OllamaEmbeddingOptions.add_args(parser)
|
|
|
|
# Add OpenAI LLM options when llm-binding is openai or azure_openai
|
|
if "--llm-binding" in sys.argv:
|
|
try:
|
|
idx = sys.argv.index("--llm-binding")
|
|
if idx + 1 < len(sys.argv) and sys.argv[idx + 1] in [
|
|
"openai",
|
|
"azure_openai",
|
|
]:
|
|
OpenAILLMOptions.add_args(parser)
|
|
except IndexError:
|
|
pass
|
|
elif os.environ.get("LLM_BINDING") in ["openai", "azure_openai"]:
|
|
OpenAILLMOptions.add_args(parser)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# convert relative path to absolute path
|
|
args.working_dir = os.path.abspath(args.working_dir)
|
|
args.input_dir = os.path.abspath(args.input_dir)
|
|
|
|
# Inject storage configuration from environment variables
|
|
args.kv_storage = get_env_value(
|
|
"LIGHTRAG_KV_STORAGE", DefaultRAGStorageConfig.KV_STORAGE
|
|
)
|
|
args.doc_status_storage = get_env_value(
|
|
"LIGHTRAG_DOC_STATUS_STORAGE", DefaultRAGStorageConfig.DOC_STATUS_STORAGE
|
|
)
|
|
args.graph_storage = get_env_value(
|
|
"LIGHTRAG_GRAPH_STORAGE", DefaultRAGStorageConfig.GRAPH_STORAGE
|
|
)
|
|
args.vector_storage = get_env_value(
|
|
"LIGHTRAG_VECTOR_STORAGE", DefaultRAGStorageConfig.VECTOR_STORAGE
|
|
)
|
|
|
|
# Get MAX_PARALLEL_INSERT from environment
|
|
args.max_parallel_insert = get_env_value("MAX_PARALLEL_INSERT", 2, int)
|
|
|
|
# Get MAX_GRAPH_NODES from environment
|
|
args.max_graph_nodes = get_env_value("MAX_GRAPH_NODES", 1000, int)
|
|
|
|
# Handle openai-ollama special case
|
|
if args.llm_binding == "openai-ollama":
|
|
args.llm_binding = "openai"
|
|
args.embedding_binding = "ollama"
|
|
|
|
# Ollama ctx_num
|
|
args.ollama_num_ctx = get_env_value("OLLAMA_NUM_CTX", 32768, int)
|
|
|
|
args.llm_binding_host = get_env_value(
|
|
"LLM_BINDING_HOST", get_default_host(args.llm_binding)
|
|
)
|
|
args.embedding_binding_host = get_env_value(
|
|
"EMBEDDING_BINDING_HOST", get_default_host(args.embedding_binding)
|
|
)
|
|
args.llm_binding_api_key = get_env_value("LLM_BINDING_API_KEY", None)
|
|
args.embedding_binding_api_key = get_env_value("EMBEDDING_BINDING_API_KEY", "")
|
|
|
|
# Inject model configuration
|
|
args.llm_model = get_env_value("LLM_MODEL", "mistral-nemo:latest")
|
|
args.embedding_model = get_env_value("EMBEDDING_MODEL", "bge-m3:latest")
|
|
args.embedding_dim = get_env_value("EMBEDDING_DIM", 1024, int)
|
|
|
|
# Inject chunk configuration
|
|
args.chunk_size = get_env_value("CHUNK_SIZE", 1200, int)
|
|
args.chunk_overlap_size = get_env_value("CHUNK_OVERLAP_SIZE", 100, int)
|
|
|
|
# Inject LLM cache configuration
|
|
args.enable_llm_cache_for_extract = get_env_value(
|
|
"ENABLE_LLM_CACHE_FOR_EXTRACT", True, bool
|
|
)
|
|
args.enable_llm_cache = get_env_value("ENABLE_LLM_CACHE", True, bool)
|
|
|
|
# Select Document loading tool (DOCLING, DEFAULT)
|
|
args.document_loading_engine = get_env_value("DOCUMENT_LOADING_ENGINE", "DEFAULT")
|
|
|
|
# Add environment variables that were previously read directly
|
|
args.cors_origins = get_env_value("CORS_ORIGINS", "*")
|
|
args.summary_language = get_env_value("SUMMARY_LANGUAGE", DEFAULT_SUMMARY_LANGUAGE)
|
|
args.entity_types = get_env_value("ENTITY_TYPES", DEFAULT_ENTITY_TYPES)
|
|
args.whitelist_paths = get_env_value("WHITELIST_PATHS", "/health,/api/*")
|
|
|
|
# For JWT Auth
|
|
args.auth_accounts = get_env_value("AUTH_ACCOUNTS", "")
|
|
args.token_secret = get_env_value("TOKEN_SECRET", "lightrag-jwt-default-secret")
|
|
args.token_expire_hours = get_env_value("TOKEN_EXPIRE_HOURS", 48, int)
|
|
args.guest_token_expire_hours = get_env_value("GUEST_TOKEN_EXPIRE_HOURS", 24, int)
|
|
args.jwt_algorithm = get_env_value("JWT_ALGORITHM", "HS256")
|
|
|
|
# Rerank model configuration
|
|
args.rerank_model = get_env_value("RERANK_MODEL", None)
|
|
args.rerank_binding_host = get_env_value("RERANK_BINDING_HOST", None)
|
|
args.rerank_binding_api_key = get_env_value("RERANK_BINDING_API_KEY", None)
|
|
# Note: rerank_binding is already set by argparse, no need to override from env
|
|
|
|
# Min rerank score configuration
|
|
args.min_rerank_score = get_env_value(
|
|
"MIN_RERANK_SCORE", DEFAULT_MIN_RERANK_SCORE, float
|
|
)
|
|
|
|
# Query configuration
|
|
args.history_turns = get_env_value("HISTORY_TURNS", DEFAULT_HISTORY_TURNS, int)
|
|
args.top_k = get_env_value("TOP_K", DEFAULT_TOP_K, int)
|
|
args.chunk_top_k = get_env_value("CHUNK_TOP_K", DEFAULT_CHUNK_TOP_K, int)
|
|
args.max_entity_tokens = get_env_value(
|
|
"MAX_ENTITY_TOKENS", DEFAULT_MAX_ENTITY_TOKENS, int
|
|
)
|
|
args.max_relation_tokens = get_env_value(
|
|
"MAX_RELATION_TOKENS", DEFAULT_MAX_RELATION_TOKENS, int
|
|
)
|
|
args.max_total_tokens = get_env_value(
|
|
"MAX_TOTAL_TOKENS", DEFAULT_MAX_TOTAL_TOKENS, int
|
|
)
|
|
args.cosine_threshold = get_env_value(
|
|
"COSINE_THRESHOLD", DEFAULT_COSINE_THRESHOLD, float
|
|
)
|
|
args.related_chunk_number = get_env_value(
|
|
"RELATED_CHUNK_NUMBER", DEFAULT_RELATED_CHUNK_NUMBER, int
|
|
)
|
|
|
|
# Add missing environment variables for health endpoint
|
|
args.force_llm_summary_on_merge = get_env_value(
|
|
"FORCE_LLM_SUMMARY_ON_MERGE", DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE, int
|
|
)
|
|
args.embedding_func_max_async = get_env_value(
|
|
"EMBEDDING_FUNC_MAX_ASYNC", DEFAULT_EMBEDDING_FUNC_MAX_ASYNC, int
|
|
)
|
|
args.embedding_batch_num = get_env_value(
|
|
"EMBEDDING_BATCH_NUM", DEFAULT_EMBEDDING_BATCH_NUM, int
|
|
)
|
|
|
|
ollama_server_infos.LIGHTRAG_NAME = args.simulated_model_name
|
|
ollama_server_infos.LIGHTRAG_TAG = args.simulated_model_tag
|
|
|
|
return args
|
|
|
|
|
|
def update_uvicorn_mode_config():
|
|
# If in uvicorn mode and workers > 1, force it to 1 and log warning
|
|
if global_args.workers > 1:
|
|
original_workers = global_args.workers
|
|
global_args.workers = 1
|
|
# Log warning directly here
|
|
logging.warning(
|
|
f"In uvicorn mode, workers parameter was set to {original_workers}. Forcing workers=1"
|
|
)
|
|
|
|
|
|
global_args = parse_args()
|