LightRAG/lightrag/kg/mongo_impl.py

1199 lines
42 KiB
Python

import os
from dataclasses import dataclass, field
import numpy as np
import configparser
import asyncio
from typing import Any, Union, final
from ..base import (
BaseGraphStorage,
BaseKVStorage,
BaseVectorStorage,
DocProcessingStatus,
DocStatus,
DocStatusStorage,
)
from ..namespace import NameSpace, is_namespace
from ..utils import logger, compute_mdhash_id
from ..types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
from ..constants import GRAPH_FIELD_SEP
import pipmaster as pm
if not pm.is_installed("pymongo"):
pm.install("pymongo")
from pymongo import AsyncMongoClient # type: ignore
from pymongo.asynchronous.database import AsyncDatabase # type: ignore
from pymongo.asynchronous.collection import AsyncCollection # type: ignore
from pymongo.operations import SearchIndexModel # type: ignore
from pymongo.errors import PyMongoError # type: ignore
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
# Get maximum number of graph nodes from environment variable, default is 1000
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
class ClientManager:
_instances = {"db": None, "ref_count": 0}
_lock = asyncio.Lock()
@classmethod
async def get_client(cls) -> AsyncMongoClient:
async with cls._lock:
if cls._instances["db"] is None:
uri = os.environ.get(
"MONGO_URI",
config.get(
"mongodb",
"uri",
fallback="mongodb://root:root@localhost:27017/",
),
)
database_name = os.environ.get(
"MONGO_DATABASE",
config.get("mongodb", "database", fallback="LightRAG"),
)
client = AsyncMongoClient(uri)
db = client.get_database(database_name)
cls._instances["db"] = db
cls._instances["ref_count"] = 0
cls._instances["ref_count"] += 1
return cls._instances["db"]
@classmethod
async def release_client(cls, db: AsyncDatabase):
async with cls._lock:
if db is not None:
if db is cls._instances["db"]:
cls._instances["ref_count"] -= 1
if cls._instances["ref_count"] == 0:
cls._instances["db"] = None
@final
@dataclass
class MongoKVStorage(BaseKVStorage):
db: AsyncDatabase = field(default=None)
_data: AsyncCollection = field(default=None)
def __post_init__(self):
self._collection_name = self.namespace
async def initialize(self):
if self.db is None:
self.db = await ClientManager.get_client()
self._data = await get_or_create_collection(self.db, self._collection_name)
logger.debug(f"Use MongoDB as KV {self._collection_name}")
async def finalize(self):
if self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
self._data = None
async def get_by_id(self, id: str) -> dict[str, Any] | None:
return await self._data.find_one({"_id": id})
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
cursor = self._data.find({"_id": {"$in": ids}})
return await cursor.to_list()
async def filter_keys(self, keys: set[str]) -> set[str]:
cursor = self._data.find({"_id": {"$in": list(keys)}}, {"_id": 1})
existing_ids = {str(x["_id"]) async for x in cursor}
return keys - existing_ids
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
logger.info(f"Inserting {len(data)} to {self.namespace}")
if not data:
return
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
update_tasks: list[Any] = []
for mode, items in data.items():
for k, v in items.items():
key = f"{mode}_{k}"
data[mode][k]["_id"] = f"{mode}_{k}"
update_tasks.append(
self._data.update_one(
{"_id": key}, {"$setOnInsert": v}, upsert=True
)
)
await asyncio.gather(*update_tasks)
else:
update_tasks = []
for k, v in data.items():
data[k]["_id"] = k
update_tasks.append(
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
)
await asyncio.gather(*update_tasks)
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
res = {}
v = await self._data.find_one({"_id": mode + "_" + id})
if v:
res[id] = v
logger.debug(f"llm_response_cache find one by:{id}")
return res
else:
return None
else:
return None
async def index_done_callback(self) -> None:
# Mongo handles persistence automatically
pass
async def delete(self, ids: list[str]) -> None:
"""Delete documents with specified IDs
Args:
ids: List of document IDs to be deleted
"""
if not ids:
return
try:
result = await self._data.delete_many({"_id": {"$in": ids}})
logger.info(
f"Deleted {result.deleted_count} documents from {self.namespace}"
)
except PyMongoError as e:
logger.error(f"Error deleting documents from {self.namespace}: {e}")
async def drop_cache_by_modes(self, modes: list[str] | None = None) -> bool:
"""Delete specific records from storage by cache mode
Args:
modes (list[str]): List of cache modes to be dropped from storage
Returns:
bool: True if successful, False otherwise
"""
if not modes:
return False
try:
# Build regex pattern to match documents with the specified modes
pattern = f"^({'|'.join(modes)})_"
result = await self._data.delete_many({"_id": {"$regex": pattern}})
logger.info(f"Deleted {result.deleted_count} documents by modes: {modes}")
return True
except Exception as e:
logger.error(f"Error deleting cache by modes {modes}: {e}")
return False
async def drop(self) -> dict[str, str]:
"""Drop the storage by removing all documents in the collection.
Returns:
dict[str, str]: Status of the operation with keys 'status' and 'message'
"""
try:
result = await self._data.delete_many({})
deleted_count = result.deleted_count
logger.info(
f"Dropped {deleted_count} documents from doc status {self._collection_name}"
)
return {
"status": "success",
"message": f"{deleted_count} documents dropped",
}
except PyMongoError as e:
logger.error(f"Error dropping doc status {self._collection_name}: {e}")
return {"status": "error", "message": str(e)}
@final
@dataclass
class MongoDocStatusStorage(DocStatusStorage):
db: AsyncDatabase = field(default=None)
_data: AsyncCollection = field(default=None)
def __post_init__(self):
self._collection_name = self.namespace
async def initialize(self):
if self.db is None:
self.db = await ClientManager.get_client()
self._data = await get_or_create_collection(self.db, self._collection_name)
logger.debug(f"Use MongoDB as DocStatus {self._collection_name}")
async def finalize(self):
if self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
self._data = None
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
return await self._data.find_one({"_id": id})
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
cursor = self._data.find({"_id": {"$in": ids}})
return await cursor.to_list()
async def filter_keys(self, data: set[str]) -> set[str]:
cursor = self._data.find({"_id": {"$in": list(data)}}, {"_id": 1})
existing_ids = {str(x["_id"]) async for x in cursor}
return data - existing_ids
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
logger.info(f"Inserting {len(data)} to {self.namespace}")
if not data:
return
update_tasks: list[Any] = []
for k, v in data.items():
data[k]["_id"] = k
update_tasks.append(
self._data.update_one({"_id": k}, {"$set": v}, upsert=True)
)
await asyncio.gather(*update_tasks)
async def get_status_counts(self) -> dict[str, int]:
"""Get counts of documents in each status"""
pipeline = [{"$group": {"_id": "$status", "count": {"$sum": 1}}}]
cursor = self._data.aggregate(pipeline)
result = await cursor.to_list()
counts = {}
for doc in result:
counts[doc["_id"]] = doc["count"]
return counts
async def get_docs_by_status(
self, status: DocStatus
) -> dict[str, DocProcessingStatus]:
"""Get all documents with a specific status"""
cursor = self._data.find({"status": status.value})
result = await cursor.to_list()
return {
doc["_id"]: DocProcessingStatus(
content=doc["content"],
content_summary=doc.get("content_summary"),
content_length=doc["content_length"],
status=doc["status"],
created_at=doc.get("created_at"),
updated_at=doc.get("updated_at"),
chunks_count=doc.get("chunks_count", -1),
file_path=doc.get("file_path", doc["_id"]),
)
for doc in result
}
async def index_done_callback(self) -> None:
# Mongo handles persistence automatically
pass
async def drop(self) -> dict[str, str]:
"""Drop the storage by removing all documents in the collection.
Returns:
dict[str, str]: Status of the operation with keys 'status' and 'message'
"""
try:
result = await self._data.delete_many({})
deleted_count = result.deleted_count
logger.info(
f"Dropped {deleted_count} documents from doc status {self._collection_name}"
)
return {
"status": "success",
"message": f"{deleted_count} documents dropped",
}
except PyMongoError as e:
logger.error(f"Error dropping doc status {self._collection_name}: {e}")
return {"status": "error", "message": str(e)}
async def delete(self, ids: list[str]) -> None:
await self._data.delete_many({"_id": {"$in": ids}})
@final
@dataclass
class MongoGraphStorage(BaseGraphStorage):
"""
A concrete implementation using MongoDB's $graphLookup to demonstrate multi-hop queries.
"""
db: AsyncDatabase = field(default=None)
# node collection storing node_id, node_properties
collection: AsyncCollection = field(default=None)
# edge collection storing source_node_id, target_node_id, and edge_properties
edgeCollection: AsyncCollection = field(default=None)
def __init__(self, namespace, global_config, embedding_func):
super().__init__(
namespace=namespace,
global_config=global_config,
embedding_func=embedding_func,
)
self._collection_name = self.namespace
self._edge_collection_name = f"{self._collection_name}_edges"
async def initialize(self):
if self.db is None:
self.db = await ClientManager.get_client()
self.collection = await get_or_create_collection(
self.db, self._collection_name
)
self.edge_collection = await get_or_create_collection(
self.db, self._edge_collection_name
)
logger.debug(f"Use MongoDB as KG {self._collection_name}")
async def finalize(self):
if self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
self.collection = None
self.edge_collection = None
# Sample entity document
# "source_ids" is Array representation of "source_id" split by GRAPH_FIELD_SEP
# {
# "_id" : "CompanyA",
# "entity_id" : "CompanyA",
# "entity_type" : "Organization",
# "description" : "A major technology company",
# "source_id" : "chunk-eeec0036b909839e8ec4fa150c939eec",
# "source_ids": ["chunk-eeec0036b909839e8ec4fa150c939eec"],
# "file_path" : "custom_kg",
# "created_at" : 1749904575
# }
# Sample relation document
# {
# "_id" : ObjectId("6856ac6e7c6bad9b5470b678"), // MongoDB build-in ObjectId
# "description" : "CompanyA develops ProductX",
# "source_node_id" : "CompanyA",
# "target_node_id" : "ProductX",
# "relationship": "Develops", // To distinguish multiple same-target relations
# "weight" : Double("1"),
# "keywords" : "develop, produce",
# "source_id" : "chunk-eeec0036b909839e8ec4fa150c939eec",
# "source_ids": ["chunk-eeec0036b909839e8ec4fa150c939eec"],
# "file_path" : "custom_kg",
# "created_at" : 1749904575
# }
#
# -------------------------------------------------------------------------
# BASIC QUERIES
# -------------------------------------------------------------------------
#
async def has_node(self, node_id: str) -> bool:
"""
Check if node_id is present in the collection by looking up its doc.
No real need for $graphLookup here, but let's keep it direct.
"""
doc = await self.collection.find_one({"_id": node_id}, {"_id": 1})
return doc is not None
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
"""
Check if there's a direct single-hop edge from source_node_id to target_node_id.
"""
# Direct check if the target_node appears among the edges array.
doc = await self.edge_collection.find_one(
{"source_node_id": source_node_id, "target_node_id": target_node_id},
{"_id": 1},
)
return doc is not None
#
# -------------------------------------------------------------------------
# DEGREES
# -------------------------------------------------------------------------
#
async def node_degree(self, node_id: str) -> int:
"""
Returns the total number of edges connected to node_id (both inbound and outbound).
"""
return await self.edge_collection.count_documents(
{"$or": [{"source_node_id": node_id}, {"target_node_id": node_id}]}
)
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
"""Get the total degree (sum of relationships) of two nodes.
Args:
src_id: Label of the source node
tgt_id: Label of the target node
Returns:
int: Sum of the degrees of both nodes
"""
src_degree = await self.node_degree(src_id)
trg_degree = await self.node_degree(tgt_id)
return src_degree + trg_degree
#
# -------------------------------------------------------------------------
# GETTERS
# -------------------------------------------------------------------------
#
async def get_node(self, node_id: str) -> dict[str, str] | None:
"""
Return the full node document, or None if missing.
"""
return await self.collection.find_one({"_id": node_id})
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> dict[str, str] | None:
return await self.edge_collection.find_one(
{
"$or": [
{
"source_node_id": source_node_id,
"target_node_id": target_node_id,
},
{
"source_node_id": target_node_id,
"target_node_id": source_node_id,
},
]
}
)
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
"""
Retrieves all edges (relationships) for a particular node identified by its label.
Args:
source_node_id: Label of the node to get edges for
Returns:
list[tuple[str, str]]: List of (source_label, target_label) tuples representing edges
None: If no edges found
"""
cursor = self.edge_collection.find(
{
"$or": [
{"source_node_id": source_node_id},
{"target_node_id": source_node_id},
]
},
{"source_node_id": 1, "target_node_id": 1},
)
return [
(e.get("source_node_id"), e.get("target_node_id")) async for e in cursor
]
async def get_nodes_batch(self, node_ids: list[str]) -> dict[str, dict]:
result = {}
async for doc in self.collection.find({"_id": {"$in": node_ids}}):
result[doc.get("_id")] = doc
return result
async def node_degrees_batch(self, node_ids: list[str]) -> dict[str, int]:
# merge the outbound and inbound results with the same "_id" and sum the "degree"
merged_results = {}
# Outbound degrees
outbound_pipeline = [
{"$match": {"source_node_id": {"$in": node_ids}}},
{"$group": {"_id": "$source_node_id", "degree": {"$sum": 1}}},
]
cursor = await self.edge_collection.aggregate(outbound_pipeline)
async for doc in cursor:
merged_results[doc.get("_id")] = doc.get("degree")
# Inbound degrees
inbound_pipeline = [
{"$match": {"target_node_id": {"$in": node_ids}}},
{"$group": {"_id": "$target_node_id", "degree": {"$sum": 1}}},
]
cursor = await self.edge_collection.aggregate(inbound_pipeline)
async for doc in cursor:
merged_results[doc.get("_id")] = merged_results.get(
doc.get("_id"), 0
) + doc.get("degree")
return merged_results
async def get_nodes_edges_batch(
self, node_ids: list[str]
) -> dict[str, list[tuple[str, str]]]:
"""
Batch retrieve edges for multiple nodes.
For each node, returns both outgoing and incoming edges to properly represent
the undirected graph nature.
Args:
node_ids: List of node IDs (entity_id) for which to retrieve edges.
Returns:
A dictionary mapping each node ID to its list of edge tuples (source, target).
For each node, the list includes both:
- Outgoing edges: (queried_node, connected_node)
- Incoming edges: (connected_node, queried_node)
"""
result = {node_id: [] for node_id in node_ids}
# Query outgoing edges (where node is the source)
outgoing_cursor = self.edge_collection.find(
{"source_node_id": {"$in": node_ids}},
{"source_node_id": 1, "target_node_id": 1},
)
async for edge in outgoing_cursor:
source = edge["source_node_id"]
target = edge["target_node_id"]
result[source].append((source, target))
# Query incoming edges (where node is the target)
incoming_cursor = self.edge_collection.find(
{"target_node_id": {"$in": node_ids}},
{"source_node_id": 1, "target_node_id": 1},
)
async for edge in incoming_cursor:
source = edge["source_node_id"]
target = edge["target_node_id"]
result[target].append((source, target))
return result
async def get_nodes_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
"""Get all nodes that are associated with the given chunk_ids.
Args:
chunk_ids (list[str]): A list of chunk IDs to find associated nodes for.
Returns:
list[dict]: A list of nodes, where each node is a dictionary of its properties.
An empty list if no matching nodes are found.
"""
if not chunk_ids:
return []
cursor = self.collection.find({"source_ids": {"$in": chunk_ids}})
return [doc async for doc in cursor]
async def get_edges_by_chunk_ids(self, chunk_ids: list[str]) -> list[dict]:
"""Get all edges that are associated with the given chunk_ids.
Args:
chunk_ids (list[str]): A list of chunk IDs to find associated edges for.
Returns:
list[dict]: A list of edges, where each edge is a dictionary of its properties.
An empty list if no matching edges are found.
"""
if not chunk_ids:
return []
cursor = self.edge_collection.find({"source_ids": {"$in": chunk_ids}})
edges = []
async for edge in cursor:
edge["source"] = edge["source_node_id"]
edge["target"] = edge["target_node_id"]
edges.append(edge)
return edges
#
# -------------------------------------------------------------------------
# UPSERTS
# -------------------------------------------------------------------------
#
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
"""
Insert or update a node document.
"""
update_doc = {"$set": {**node_data}}
if node_data.get("source_id", ""):
update_doc["$set"]["source_ids"] = node_data["source_id"].split(
GRAPH_FIELD_SEP
)
await self.collection.update_one({"_id": node_id}, update_doc, upsert=True)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
) -> None:
"""
Upsert an edge from source_node_id -> target_node_id with optional 'relation'.
If an edge with the same target exists, we remove it and re-insert with updated data.
"""
# Ensure source node exists
await self.upsert_node(source_node_id, {})
update_doc = {"$set": edge_data}
if edge_data.get("source_id", ""):
update_doc["$set"]["source_ids"] = edge_data["source_id"].split(
GRAPH_FIELD_SEP
)
await self.edge_collection.update_one(
{"source_node_id": source_node_id, "target_node_id": target_node_id},
update_doc,
upsert=True,
)
#
# -------------------------------------------------------------------------
# DELETION
# -------------------------------------------------------------------------
#
async def delete_node(self, node_id: str) -> None:
"""
1) Remove node's doc entirely.
2) Remove inbound edges from any doc that references node_id.
"""
# Remove all edges
await self.edge_collection.delete_many(
{"$or": [{"source_node_id": node_id}, {"target_node_id": node_id}]}
)
# Remove the node doc
await self.collection.delete_one({"_id": node_id})
#
# -------------------------------------------------------------------------
# QUERY
# -------------------------------------------------------------------------
#
async def get_all_labels(self) -> list[str]:
"""
Get all existing node _id in the database
Returns:
[id1, id2, ...] # Alphabetically sorted id list
"""
cursor = self.collection.find({}, projection={"_id": 1}, sort=[("_id", 1)])
labels = []
async for doc in cursor:
labels.append(doc["_id"])
return labels
async def get_knowledge_graph(
self,
node_label: str,
max_depth: int = 5,
max_nodes: int = MAX_GRAPH_NODES,
) -> KnowledgeGraph:
"""
Get complete connected subgraph for specified node (including the starting node itself)
Args:
node_label: Label of the nodes to start from
max_depth: Maximum depth of traversal (default: 5)
Returns:
KnowledgeGraph object containing nodes and edges of the subgraph
"""
label = node_label
result = KnowledgeGraph()
seen_nodes = set()
seen_edges = set()
node_edges = []
try:
pipeline = [
{
"$graphLookup": {
"from": self._edge_collection_name,
"startWith": "$_id",
"connectFromField": "target_node_id",
"connectToField": "source_node_id",
"maxDepth": max_depth,
"depthField": "depth",
"as": "connected_edges",
},
},
{"$addFields": {"edge_count": {"$size": "$connected_edges"}}},
{"$sort": {"edge_count": -1}},
{"$limit": max_nodes},
]
if label == "*":
all_node_count = await self.collection.count_documents({})
result.is_truncated = all_node_count > max_nodes
else:
# Verify if starting node exists
start_node = await self.collection.find_one({"_id": label})
if not start_node:
logger.warning(f"Starting node with label {label} does not exist!")
return result
# Add starting node to pipeline
pipeline.insert(0, {"$match": {"_id": label}})
cursor = await self.collection.aggregate(pipeline)
async for doc in cursor:
# Add the start node
node_id = str(doc["_id"])
result.nodes.append(
KnowledgeGraphNode(
id=node_id,
labels=[node_id],
properties={
k: v
for k, v in doc.items()
if k
not in [
"_id",
"connected_edges",
"edge_count",
]
},
)
)
seen_nodes.add(node_id)
if doc.get("connected_edges", []):
node_edges.extend(doc.get("connected_edges"))
for edge in node_edges:
if (
edge["source_node_id"] not in seen_nodes
or edge["target_node_id"] not in seen_nodes
):
continue
edge_id = f"{edge['source_node_id']}-{edge['target_node_id']}"
if edge_id not in seen_edges:
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type=edge.get("relationship", ""),
source=edge["source_node_id"],
target=edge["target_node_id"],
properties={
k: v
for k, v in edge.items()
if k
not in [
"_id",
"source_node_id",
"target_node_id",
"relationship",
]
},
)
)
seen_edges.add(edge_id)
logger.info(
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
)
except PyMongoError as e:
logger.error(f"MongoDB query failed: {str(e)}")
return result
async def index_done_callback(self) -> None:
# Mongo handles persistence automatically
pass
async def remove_nodes(self, nodes: list[str]) -> None:
"""Delete multiple nodes
Args:
nodes: List of node IDs to be deleted
"""
logger.info(f"Deleting {len(nodes)} nodes")
if not nodes:
return
# 1. Remove all edges referencing these nodes
await self.edge_collection.delete_many(
{
"$or": [
{"source_node_id": {"$in": nodes}},
{"target_node_id": {"$in": nodes}},
]
}
)
# 2. Delete the node documents
await self.collection.delete_many({"_id": {"$in": nodes}})
logger.debug(f"Successfully deleted nodes: {nodes}")
async def remove_edges(self, edges: list[tuple[str, str]]) -> None:
"""Delete multiple edges
Args:
edges: List of edges to be deleted, each edge is a (source, target) tuple
"""
logger.info(f"Deleting {len(edges)} edges")
if not edges:
return
all_edge_pairs = []
for source_id, target_id in edges:
all_edge_pairs.append(
{"source_node_id": source_id, "target_node_id": target_id}
)
all_edge_pairs.append(
{"source_node_id": target_id, "target_node_id": source_id}
)
await self.edge_collection.delete_many({"$or": all_edge_pairs})
logger.debug(f"Successfully deleted edges: {edges}")
async def drop(self) -> dict[str, str]:
"""Drop the storage by removing all documents in the collection.
Returns:
dict[str, str]: Status of the operation with keys 'status' and 'message'
"""
try:
result = await self.collection.delete_many({})
deleted_count = result.deleted_count
logger.info(
f"Dropped {deleted_count} documents from graph {self._collection_name}"
)
result = await self.edge_collection.delete_many({})
edge_count = result.deleted_count
logger.info(
f"Dropped {edge_count} edges from graph {self._edge_collection_name}"
)
return {
"status": "success",
"message": f"{deleted_count} documents and {edge_count} edges dropped",
}
except PyMongoError as e:
logger.error(f"Error dropping graph {self._collection_name}: {e}")
return {"status": "error", "message": str(e)}
@final
@dataclass
class MongoVectorDBStorage(BaseVectorStorage):
db: AsyncDatabase | None = field(default=None)
_data: AsyncCollection | None = field(default=None)
def __post_init__(self):
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
cosine_threshold = kwargs.get("cosine_better_than_threshold")
if cosine_threshold is None:
raise ValueError(
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
)
self.cosine_better_than_threshold = cosine_threshold
self._collection_name = self.namespace
self._max_batch_size = self.global_config["embedding_batch_num"]
async def initialize(self):
if self.db is None:
self.db = await ClientManager.get_client()
self._data = await get_or_create_collection(self.db, self._collection_name)
# Ensure vector index exists
await self.create_vector_index_if_not_exists()
logger.debug(f"Use MongoDB as VDB {self._collection_name}")
async def finalize(self):
if self.db is not None:
await ClientManager.release_client(self.db)
self.db = None
self._data = None
async def create_vector_index_if_not_exists(self):
"""Creates an Atlas Vector Search index."""
try:
index_name = "vector_knn_index"
indexes = await self._data.list_search_indexes().to_list(length=None)
for index in indexes:
if index["name"] == index_name:
logger.debug("vector index already exist")
return
search_index_model = SearchIndexModel(
definition={
"fields": [
{
"type": "vector",
"numDimensions": self.embedding_func.embedding_dim, # Ensure correct dimensions
"path": "vector",
"similarity": "cosine", # Options: euclidean, cosine, dotProduct
}
]
},
name=index_name,
type="vectorSearch",
)
await self._data.create_search_index(search_index_model)
logger.info("Vector index created successfully.")
except PyMongoError as _:
logger.debug("vector index already exist")
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
logger.info(f"Inserting {len(data)} to {self.namespace}")
if not data:
return
# Add current time as Unix timestamp
import time
current_time = int(time.time())
list_data = [
{
"_id": k,
"created_at": current_time, # Add created_at field as Unix timestamp
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embedding_tasks = [self.embedding_func(batch) for batch in batches]
embeddings_list = await asyncio.gather(*embedding_tasks)
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["vector"] = np.array(embeddings[i], dtype=np.float32).tolist()
update_tasks = []
for doc in list_data:
update_tasks.append(
self._data.update_one({"_id": doc["_id"]}, {"$set": doc}, upsert=True)
)
await asyncio.gather(*update_tasks)
return list_data
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
) -> list[dict[str, Any]]:
"""Queries the vector database using Atlas Vector Search."""
# Generate the embedding
embedding = await self.embedding_func(
[query], _priority=5
) # higher priority for query
# Convert numpy array to a list to ensure compatibility with MongoDB
query_vector = embedding[0].tolist()
# Define the aggregation pipeline with the converted query vector
pipeline = [
{
"$vectorSearch": {
"index": "vector_knn_index", # Ensure this matches the created index name
"path": "vector",
"queryVector": query_vector,
"numCandidates": 100, # Adjust for performance
"limit": top_k,
}
},
{"$addFields": {"score": {"$meta": "vectorSearchScore"}}},
{"$match": {"score": {"$gte": self.cosine_better_than_threshold}}},
{"$project": {"vector": 0}},
]
# Execute the aggregation pipeline
cursor = self._data.aggregate(pipeline)
results = await cursor.to_list()
# Format and return the results with created_at field
return [
{
**doc,
"id": doc["_id"],
"distance": doc.get("score", None),
"created_at": doc.get("created_at"), # Include created_at field
}
for doc in results
]
async def index_done_callback(self) -> None:
# Mongo handles persistence automatically
pass
async def delete(self, ids: list[str]) -> None:
"""Delete vectors with specified IDs
Args:
ids: List of vector IDs to be deleted
"""
logger.info(f"Deleting {len(ids)} vectors from {self.namespace}")
if not ids:
return
try:
result = await self._data.delete_many({"_id": {"$in": ids}})
logger.debug(
f"Successfully deleted {result.deleted_count} vectors from {self.namespace}"
)
except PyMongoError as e:
logger.error(
f"Error while deleting vectors from {self.namespace}: {str(e)}"
)
async def delete_entity(self, entity_name: str) -> None:
"""Delete an entity by its name
Args:
entity_name: Name of the entity to delete
"""
try:
entity_id = compute_mdhash_id(entity_name, prefix="ent-")
logger.debug(
f"Attempting to delete entity {entity_name} with ID {entity_id}"
)
result = await self._data.delete_one({"_id": entity_id})
if result.deleted_count > 0:
logger.debug(f"Successfully deleted entity {entity_name}")
else:
logger.debug(f"Entity {entity_name} not found in storage")
except PyMongoError as e:
logger.error(f"Error deleting entity {entity_name}: {str(e)}")
async def delete_entity_relation(self, entity_name: str) -> None:
"""Delete all relations associated with an entity
Args:
entity_name: Name of the entity whose relations should be deleted
"""
try:
# Find relations where entity appears as source or target
relations_cursor = self._data.find(
{"$or": [{"src_id": entity_name}, {"tgt_id": entity_name}]}
)
relations = await relations_cursor.to_list(length=None)
if not relations:
logger.debug(f"No relations found for entity {entity_name}")
return
# Extract IDs of relations to delete
relation_ids = [relation["_id"] for relation in relations]
logger.debug(
f"Found {len(relation_ids)} relations for entity {entity_name}"
)
# Delete the relations
result = await self._data.delete_many({"_id": {"$in": relation_ids}})
logger.debug(f"Deleted {result.deleted_count} relations for {entity_name}")
except PyMongoError as e:
logger.error(f"Error deleting relations for {entity_name}: {str(e)}")
except PyMongoError as e:
logger.error(f"Error searching by prefix in {self.namespace}: {str(e)}")
return []
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
try:
# Search for the specific ID in MongoDB
result = await self._data.find_one({"_id": id})
if result:
# Format the result to include id field expected by API
result_dict = dict(result)
if "_id" in result_dict and "id" not in result_dict:
result_dict["id"] = result_dict["_id"]
return result_dict
return None
except Exception as e:
logger.error(f"Error retrieving vector data for ID {id}: {e}")
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
try:
# Query MongoDB for multiple IDs
cursor = self._data.find({"_id": {"$in": ids}})
results = await cursor.to_list(length=None)
# Format results to include id field expected by API
formatted_results = []
for result in results:
result_dict = dict(result)
if "_id" in result_dict and "id" not in result_dict:
result_dict["id"] = result_dict["_id"]
formatted_results.append(result_dict)
return formatted_results
except Exception as e:
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
return []
async def drop(self) -> dict[str, str]:
"""Drop the storage by removing all documents in the collection and recreating vector index.
Returns:
dict[str, str]: Status of the operation with keys 'status' and 'message'
"""
try:
# Delete all documents
result = await self._data.delete_many({})
deleted_count = result.deleted_count
# Recreate vector index
await self.create_vector_index_if_not_exists()
logger.info(
f"Dropped {deleted_count} documents from vector storage {self._collection_name} and recreated vector index"
)
return {
"status": "success",
"message": f"{deleted_count} documents dropped and vector index recreated",
}
except PyMongoError as e:
logger.error(f"Error dropping vector storage {self._collection_name}: {e}")
return {"status": "error", "message": str(e)}
async def get_or_create_collection(db: AsyncDatabase, collection_name: str):
collection_names = await db.list_collection_names()
if collection_name not in collection_names:
collection = await db.create_collection(collection_name)
logger.info(f"Created collection: {collection_name}")
return collection
else:
logger.debug(f"Collection '{collection_name}' already exists.")
return db.get_collection(collection_name)