mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-03 23:19:22 +00:00
90 lines
2.4 KiB
Python
90 lines
2.4 KiB
Python
import asyncio
|
|
import inspect
|
|
import os
|
|
|
|
# Uncomment these lines below to filter out somewhat verbose INFO level
|
|
# logging prints (the default loglevel is INFO).
|
|
# This has to go before the lightrag imports to work,
|
|
# which triggers linting errors, so we keep it commented out:
|
|
# import logging
|
|
# logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.WARN)
|
|
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
|
from lightrag.utils import EmbeddingFunc
|
|
|
|
WORKING_DIR = "./dickens_gremlin"
|
|
|
|
if not os.path.exists(WORKING_DIR):
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
# Gremlin
|
|
os.environ["GREMLIN_HOST"] = "localhost"
|
|
os.environ["GREMLIN_PORT"] = "8182"
|
|
os.environ["GREMLIN_GRAPH"] = "dickens"
|
|
|
|
# Creating a non-default source requires manual
|
|
# configuration and a restart on the server: use the dafault "g"
|
|
os.environ["GREMLIN_TRAVERSE_SOURCE"] = "g"
|
|
|
|
# No authorization by default on docker tinkerpop/gremlin-server
|
|
os.environ["GREMLIN_USER"] = ""
|
|
os.environ["GREMLIN_PASSWORD"] = ""
|
|
|
|
rag = LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
llm_model_func=ollama_model_complete,
|
|
llm_model_name="llama3.1:8b",
|
|
llm_model_max_async=4,
|
|
llm_model_max_token_size=32768,
|
|
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
|
|
embedding_func=EmbeddingFunc(
|
|
embedding_dim=768,
|
|
max_token_size=8192,
|
|
func=lambda texts: ollama_embed(
|
|
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
|
),
|
|
),
|
|
graph_storage="GremlinStorage",
|
|
)
|
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f:
|
|
rag.insert(f.read())
|
|
|
|
# Perform naive search
|
|
print(
|
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
|
)
|
|
|
|
# Perform local search
|
|
print(
|
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
|
)
|
|
|
|
# Perform global search
|
|
print(
|
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
|
)
|
|
|
|
# Perform hybrid search
|
|
print(
|
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
|
)
|
|
|
|
# stream response
|
|
resp = rag.query(
|
|
"What are the top themes in this story?",
|
|
param=QueryParam(mode="hybrid", stream=True),
|
|
)
|
|
|
|
|
|
async def print_stream(stream):
|
|
async for chunk in stream:
|
|
print(chunk, end="", flush=True)
|
|
|
|
|
|
if inspect.isasyncgen(resp):
|
|
asyncio.run(print_stream(resp))
|
|
else:
|
|
print(resp)
|