mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-04 07:26:17 +00:00
114 lines
3.5 KiB
Python
114 lines
3.5 KiB
Python
import os
|
|
import asyncio
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
|
|
from lightrag.utils import EmbeddingFunc
|
|
import numpy as np
|
|
|
|
#########
|
|
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
|
# import nest_asyncio
|
|
# nest_asyncio.apply()
|
|
#########
|
|
WORKING_DIR = "./chromadb_test_dir"
|
|
if not os.path.exists(WORKING_DIR):
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
# ChromaDB Configuration
|
|
CHROMADB_HOST = os.environ.get("CHROMADB_HOST", "localhost")
|
|
CHROMADB_PORT = int(os.environ.get("CHROMADB_PORT", 8000))
|
|
CHROMADB_AUTH_TOKEN = os.environ.get("CHROMADB_AUTH_TOKEN", "secret-token")
|
|
CHROMADB_AUTH_PROVIDER = os.environ.get(
|
|
"CHROMADB_AUTH_PROVIDER", "chromadb.auth.token_authn.TokenAuthClientProvider"
|
|
)
|
|
CHROMADB_AUTH_HEADER = os.environ.get("CHROMADB_AUTH_HEADER", "X-Chroma-Token")
|
|
|
|
# Embedding Configuration and Functions
|
|
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
|
|
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
|
|
|
# ChromaDB requires knowing the dimension of embeddings upfront when
|
|
# creating a collection. The embedding dimension is model-specific
|
|
# (e.g. text-embedding-3-large uses 3072 dimensions)
|
|
# we dynamically determine it by running a test embedding
|
|
# and then pass it to the ChromaDBStorage class
|
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray:
|
|
return await openai_embed(
|
|
texts,
|
|
model=EMBEDDING_MODEL,
|
|
)
|
|
|
|
|
|
async def get_embedding_dimension():
|
|
test_text = ["This is a test sentence."]
|
|
embedding = await embedding_func(test_text)
|
|
return embedding.shape[1]
|
|
|
|
|
|
async def create_embedding_function_instance():
|
|
# Get embedding dimension
|
|
embedding_dimension = await get_embedding_dimension()
|
|
# Create embedding function instance
|
|
return EmbeddingFunc(
|
|
embedding_dim=embedding_dimension,
|
|
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
|
func=embedding_func,
|
|
)
|
|
|
|
|
|
async def initialize_rag():
|
|
embedding_func_instance = await create_embedding_function_instance()
|
|
|
|
return LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
llm_model_func=gpt_4o_mini_complete,
|
|
embedding_func=embedding_func_instance,
|
|
vector_storage="ChromaVectorDBStorage",
|
|
log_level="DEBUG",
|
|
embedding_batch_num=32,
|
|
vector_db_storage_cls_kwargs={
|
|
"host": CHROMADB_HOST,
|
|
"port": CHROMADB_PORT,
|
|
"auth_token": CHROMADB_AUTH_TOKEN,
|
|
"auth_provider": CHROMADB_AUTH_PROVIDER,
|
|
"auth_header_name": CHROMADB_AUTH_HEADER,
|
|
"collection_settings": {
|
|
"hnsw:space": "cosine",
|
|
"hnsw:construction_ef": 128,
|
|
"hnsw:search_ef": 128,
|
|
"hnsw:M": 16,
|
|
"hnsw:batch_size": 100,
|
|
"hnsw:sync_threshold": 1000,
|
|
},
|
|
},
|
|
)
|
|
|
|
|
|
# Run the initialization
|
|
rag = asyncio.run(initialize_rag())
|
|
|
|
# with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
|
# rag.insert(f.read())
|
|
|
|
# Perform naive search
|
|
print(
|
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
|
)
|
|
|
|
# Perform local search
|
|
print(
|
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
|
)
|
|
|
|
# Perform global search
|
|
print(
|
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
|
)
|
|
|
|
# Perform hybrid search
|
|
print(
|
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
|
)
|