LightRAG/lightrag/api/config.py
Michele Comitini bd94714b15 options needs to be passed to ollama client embed() method
Fix line length

Create binding_options.py

Remove test property

Add dynamic binding options to CLI and environment config

Automatically generate command-line arguments and environment variable
support for all LLM provider bindings using BindingOptions. Add sample
.env generation and extensible framework for new providers.

Add example option definitions and fix test arg check in OllamaOptions

Add options_dict method to BindingOptions for argument parsing

Add comprehensive Ollama binding configuration options

ruff formatting Apply ruff formatting to binding_options.py

Add Ollama separate options for embedding and LLM

Refactor Ollama binding options and fix class var handling

The changes improve how class variables are handled in binding options
and better organize the Ollama-specific options into LLM and embedding
subclasses.

Fix typo in arg test.

Rename cls parameter to klass to avoid keyword shadowing

Fix Ollama embedding binding name typo

Fix ollama embedder context param name

Split Ollama options into LLM and embedding configs with mixin base

Add Ollama option configuration to LLM and embeddings in lightrag_server

Update sample .env generation and environment handling

Conditionally add env vars and cmdline options only when ollama bindings
are used. Add example env file for Ollama binding options.
2025-07-28 12:05:40 +02:00

421 lines
14 KiB
Python

"""
Configs for the LightRAG API.
"""
import os
import argparse
import logging
from dotenv import load_dotenv
from lightrag.utils import get_env_value
from lightrag.llm.binding_options import OllamaEmbeddingOptions, OllamaLLMOptions
import sys
from lightrag.constants import (
DEFAULT_WOKERS,
DEFAULT_TIMEOUT,
DEFAULT_TOP_K,
DEFAULT_CHUNK_TOP_K,
DEFAULT_HISTORY_TURNS,
DEFAULT_MAX_ENTITY_TOKENS,
DEFAULT_MAX_RELATION_TOKENS,
DEFAULT_MAX_TOTAL_TOKENS,
DEFAULT_COSINE_THRESHOLD,
DEFAULT_RELATED_CHUNK_NUMBER,
DEFAULT_MIN_RERANK_SCORE,
DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE,
DEFAULT_MAX_ASYNC,
DEFAULT_SUMMARY_MAX_TOKENS,
DEFAULT_SUMMARY_LANGUAGE,
DEFAULT_EMBEDDING_FUNC_MAX_ASYNC,
DEFAULT_EMBEDDING_BATCH_NUM,
DEFAULT_OLLAMA_MODEL_NAME,
DEFAULT_OLLAMA_MODEL_TAG,
DEFAULT_OLLAMA_MODEL_SIZE,
DEFAULT_OLLAMA_CREATED_AT,
DEFAULT_OLLAMA_DIGEST,
)
# use the .env that is inside the current folder
# allows to use different .env file for each lightrag instance
# the OS environment variables take precedence over the .env file
load_dotenv(dotenv_path=".env", override=False)
class OllamaServerInfos:
def __init__(self, name=None, tag=None):
self._lightrag_name = name or os.getenv(
"OLLAMA_EMULATING_MODEL_NAME", DEFAULT_OLLAMA_MODEL_NAME
)
self._lightrag_tag = tag or os.getenv(
"OLLAMA_EMULATING_MODEL_TAG", DEFAULT_OLLAMA_MODEL_TAG
)
self.LIGHTRAG_SIZE = DEFAULT_OLLAMA_MODEL_SIZE
self.LIGHTRAG_CREATED_AT = DEFAULT_OLLAMA_CREATED_AT
self.LIGHTRAG_DIGEST = DEFAULT_OLLAMA_DIGEST
@property
def LIGHTRAG_NAME(self):
return self._lightrag_name
@LIGHTRAG_NAME.setter
def LIGHTRAG_NAME(self, value):
self._lightrag_name = value
@property
def LIGHTRAG_TAG(self):
return self._lightrag_tag
@LIGHTRAG_TAG.setter
def LIGHTRAG_TAG(self, value):
self._lightrag_tag = value
@property
def LIGHTRAG_MODEL(self):
return f"{self._lightrag_name}:{self._lightrag_tag}"
ollama_server_infos = OllamaServerInfos()
class DefaultRAGStorageConfig:
KV_STORAGE = "JsonKVStorage"
VECTOR_STORAGE = "NanoVectorDBStorage"
GRAPH_STORAGE = "NetworkXStorage"
DOC_STATUS_STORAGE = "JsonDocStatusStorage"
def get_default_host(binding_type: str) -> str:
default_hosts = {
"ollama": os.getenv("LLM_BINDING_HOST", "http://localhost:11434"),
"lollms": os.getenv("LLM_BINDING_HOST", "http://localhost:9600"),
"azure_openai": os.getenv("AZURE_OPENAI_ENDPOINT", "https://api.openai.com/v1"),
"openai": os.getenv("LLM_BINDING_HOST", "https://api.openai.com/v1"),
}
return default_hosts.get(
binding_type, os.getenv("LLM_BINDING_HOST", "http://localhost:11434")
) # fallback to ollama if unknown
def parse_args() -> argparse.Namespace:
"""
Parse command line arguments with environment variable fallback
Args:
is_uvicorn_mode: Whether running under uvicorn mode
Returns:
argparse.Namespace: Parsed arguments
"""
parser = argparse.ArgumentParser(
description="LightRAG FastAPI Server with separate working and input directories"
)
# Server configuration
parser.add_argument(
"--host",
default=get_env_value("HOST", "0.0.0.0"),
help="Server host (default: from env or 0.0.0.0)",
)
parser.add_argument(
"--port",
type=int,
default=get_env_value("PORT", 9621, int),
help="Server port (default: from env or 9621)",
)
# Directory configuration
parser.add_argument(
"--working-dir",
default=get_env_value("WORKING_DIR", "./rag_storage"),
help="Working directory for RAG storage (default: from env or ./rag_storage)",
)
parser.add_argument(
"--input-dir",
default=get_env_value("INPUT_DIR", "./inputs"),
help="Directory containing input documents (default: from env or ./inputs)",
)
parser.add_argument(
"--timeout",
default=get_env_value("TIMEOUT", DEFAULT_TIMEOUT,
int, special_none=True),
type=int,
help="Timeout in seconds (useful when using slow AI). Use None for infinite timeout",
)
# RAG configuration
parser.add_argument(
"--max-async",
type=int,
default=get_env_value("MAX_ASYNC", DEFAULT_MAX_ASYNC, int),
help=f"Maximum async operations (default: from env or {DEFAULT_MAX_ASYNC})",
)
parser.add_argument(
"--max-tokens",
type=int,
default=get_env_value("MAX_TOKENS", DEFAULT_SUMMARY_MAX_TOKENS, int),
help=f"Maximum token size (default: from env or {DEFAULT_SUMMARY_MAX_TOKENS})",
)
# Logging configuration
parser.add_argument(
"--log-level",
default=get_env_value("LOG_LEVEL", "INFO"),
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Logging level (default: from env or INFO)",
)
parser.add_argument(
"--verbose",
action="store_true",
default=get_env_value("VERBOSE", False, bool),
help="Enable verbose debug output(only valid for DEBUG log-level)",
)
parser.add_argument(
"--key",
type=str,
default=get_env_value("LIGHTRAG_API_KEY", None),
help="API key for authentication. This protects lightrag server against unauthorized access",
)
# Optional https parameters
parser.add_argument(
"--ssl",
action="store_true",
default=get_env_value("SSL", False, bool),
help="Enable HTTPS (default: from env or False)",
)
parser.add_argument(
"--ssl-certfile",
default=get_env_value("SSL_CERTFILE", None),
help="Path to SSL certificate file (required if --ssl is enabled)",
)
parser.add_argument(
"--ssl-keyfile",
default=get_env_value("SSL_KEYFILE", None),
help="Path to SSL private key file (required if --ssl is enabled)",
)
# Ollama model configuration
parser.add_argument(
"--simulated-model-name",
type=str,
default=get_env_value("OLLAMA_EMULATING_MODEL_NAME", DEFAULT_OLLAMA_MODEL_NAME),
help="Name for the simulated Ollama model (default: from env or lightrag)",
)
parser.add_argument(
"--simulated-model-tag",
type=str,
default=get_env_value("OLLAMA_EMULATING_MODEL_TAG", DEFAULT_OLLAMA_MODEL_TAG),
help="Tag for the simulated Ollama model (default: from env or latest)",
)
# Namespace
parser.add_argument(
"--workspace",
type=str,
default=get_env_value("WORKSPACE", ""),
help="Default workspace for all storage",
)
parser.add_argument(
"--auto-scan-at-startup",
action="store_true",
default=False,
help="Enable automatic scanning when the program starts",
)
# Server workers configuration
parser.add_argument(
"--workers",
type=int,
default=get_env_value("WORKERS", DEFAULT_WOKERS, int),
help="Number of worker processes (default: from env or 1)",
)
# LLM and embedding bindings
parser.add_argument(
"--llm-binding",
type=str,
default=get_env_value("LLM_BINDING", "ollama"),
choices=["lollms", "ollama", "openai",
"openai-ollama", "azure_openai"],
help="LLM binding type (default: from env or ollama)",
)
parser.add_argument(
"--embedding-binding",
type=str,
default=get_env_value("EMBEDDING_BINDING", "ollama"),
choices=["lollms", "ollama", "openai", "azure_openai"],
help="Embedding binding type (default: from env or ollama)",
)
# Conditionally add binding options defined in binding_options module
# This will add command line arguments for all binding options (e.g., --ollama-embedding-num_ctx)
# and corresponding environment variables (e.g., OLLAMA_EMBEDDING_NUM_CTX)
if '--llm-binding' in sys.argv:
try:
idx = sys.argv.index('--llm-binding')
if idx + 1 < len(sys.argv) and sys.argv[idx + 1] == 'ollama':
OllamaLLMOptions.add_args(parser)
except IndexError:
pass
elif os.environ.get('LLM_BINDING') == 'ollama':
OllamaLLMOptions.add_args(parser)
if '--embedding-binding' in sys.argv:
try:
idx = sys.argv.index('--embedding-binding')
if idx + 1 < len(sys.argv) and sys.argv[idx + 1] == 'ollama':
OllamaEmbeddingOptions.add_args(parser)
except IndexError:
pass
elif os.environ.get('EMBEDDING_BINDING') == 'ollama':
OllamaEmbeddingOptions.add_args(parser)
args = parser.parse_args()
# convert relative path to absolute path
args.working_dir = os.path.abspath(args.working_dir)
args.input_dir = os.path.abspath(args.input_dir)
# Inject storage configuration from environment variables
args.kv_storage = get_env_value(
"LIGHTRAG_KV_STORAGE", DefaultRAGStorageConfig.KV_STORAGE
)
args.doc_status_storage = get_env_value(
"LIGHTRAG_DOC_STATUS_STORAGE", DefaultRAGStorageConfig.DOC_STATUS_STORAGE
)
args.graph_storage = get_env_value(
"LIGHTRAG_GRAPH_STORAGE", DefaultRAGStorageConfig.GRAPH_STORAGE
)
args.vector_storage = get_env_value(
"LIGHTRAG_VECTOR_STORAGE", DefaultRAGStorageConfig.VECTOR_STORAGE
)
# Get MAX_PARALLEL_INSERT from environment
args.max_parallel_insert = get_env_value("MAX_PARALLEL_INSERT", 2, int)
# Get MAX_GRAPH_NODES from environment
args.max_graph_nodes = get_env_value("MAX_GRAPH_NODES", 1000, int)
# Handle openai-ollama special case
if args.llm_binding == "openai-ollama":
args.llm_binding = "openai"
args.embedding_binding = "ollama"
# Ollama ctx_num
args.ollama_num_ctx = get_env_value("OLLAMA_NUM_CTX", 32768, int)
args.llm_binding_host = get_env_value(
"LLM_BINDING_HOST", get_default_host(args.llm_binding)
)
args.embedding_binding_host = get_env_value(
"EMBEDDING_BINDING_HOST", get_default_host(args.embedding_binding)
)
args.llm_binding_api_key = get_env_value("LLM_BINDING_API_KEY", None)
args.embedding_binding_api_key = get_env_value(
"EMBEDDING_BINDING_API_KEY", "")
# Inject model configuration
args.llm_model = get_env_value("LLM_MODEL", "mistral-nemo:latest")
args.embedding_model = get_env_value("EMBEDDING_MODEL", "bge-m3:latest")
args.embedding_dim = get_env_value("EMBEDDING_DIM", 1024, int)
args.max_embed_tokens = get_env_value("MAX_EMBED_TOKENS", 8192, int)
# Inject chunk configuration
args.chunk_size = get_env_value("CHUNK_SIZE", 1200, int)
args.chunk_overlap_size = get_env_value("CHUNK_OVERLAP_SIZE", 100, int)
# Inject LLM cache configuration
args.enable_llm_cache_for_extract = get_env_value(
"ENABLE_LLM_CACHE_FOR_EXTRACT", True, bool
)
args.enable_llm_cache = get_env_value("ENABLE_LLM_CACHE", True, bool)
# Inject LLM temperature configuration
args.temperature = get_env_value("TEMPERATURE", 0.5, float)
# Select Document loading tool (DOCLING, DEFAULT)
args.document_loading_engine = get_env_value(
"DOCUMENT_LOADING_ENGINE", "DEFAULT")
# Add environment variables that were previously read directly
args.cors_origins = get_env_value("CORS_ORIGINS", "*")
args.summary_language = get_env_value("SUMMARY_LANGUAGE", DEFAULT_SUMMARY_LANGUAGE)
args.whitelist_paths = get_env_value("WHITELIST_PATHS", "/health,/api/*")
# For JWT Auth
args.auth_accounts = get_env_value("AUTH_ACCOUNTS", "")
args.token_secret = get_env_value(
"TOKEN_SECRET", "lightrag-jwt-default-secret")
args.token_expire_hours = get_env_value("TOKEN_EXPIRE_HOURS", 48, int)
args.guest_token_expire_hours = get_env_value(
"GUEST_TOKEN_EXPIRE_HOURS", 24, int)
args.jwt_algorithm = get_env_value("JWT_ALGORITHM", "HS256")
# Rerank model configuration
args.rerank_model = get_env_value(
"RERANK_MODEL", "BAAI/bge-reranker-v2-m3")
args.rerank_binding_host = get_env_value("RERANK_BINDING_HOST", None)
args.rerank_binding_api_key = get_env_value("RERANK_BINDING_API_KEY", None)
# Min rerank score configuration
args.min_rerank_score = get_env_value(
"MIN_RERANK_SCORE", DEFAULT_MIN_RERANK_SCORE, float
)
# Query configuration
args.history_turns = get_env_value(
"HISTORY_TURNS", DEFAULT_HISTORY_TURNS, int)
args.top_k = get_env_value("TOP_K", DEFAULT_TOP_K, int)
args.chunk_top_k = get_env_value("CHUNK_TOP_K", DEFAULT_CHUNK_TOP_K, int)
args.max_entity_tokens = get_env_value(
"MAX_ENTITY_TOKENS", DEFAULT_MAX_ENTITY_TOKENS, int
)
args.max_relation_tokens = get_env_value(
"MAX_RELATION_TOKENS", DEFAULT_MAX_RELATION_TOKENS, int
)
args.max_total_tokens = get_env_value(
"MAX_TOTAL_TOKENS", DEFAULT_MAX_TOTAL_TOKENS, int
)
args.cosine_threshold = get_env_value(
"COSINE_THRESHOLD", DEFAULT_COSINE_THRESHOLD, float
)
args.related_chunk_number = get_env_value(
"RELATED_CHUNK_NUMBER", DEFAULT_RELATED_CHUNK_NUMBER, int
)
# Add missing environment variables for health endpoint
args.force_llm_summary_on_merge = get_env_value(
"FORCE_LLM_SUMMARY_ON_MERGE", DEFAULT_FORCE_LLM_SUMMARY_ON_MERGE, int
)
args.embedding_func_max_async = get_env_value(
"EMBEDDING_FUNC_MAX_ASYNC", DEFAULT_EMBEDDING_FUNC_MAX_ASYNC, int
)
args.embedding_batch_num = get_env_value(
"EMBEDDING_BATCH_NUM", DEFAULT_EMBEDDING_BATCH_NUM, int
)
ollama_server_infos.LIGHTRAG_NAME = args.simulated_model_name
ollama_server_infos.LIGHTRAG_TAG = args.simulated_model_tag
return args
def update_uvicorn_mode_config():
# If in uvicorn mode and workers > 1, force it to 1 and log warning
if global_args.workers > 1:
original_workers = global_args.workers
global_args.workers = 1
# Log warning directly here
logging.warning(
f"In uvicorn mode, workers parameter was set to {
original_workers}. Forcing workers=1"
)
global_args = parse_args()