mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-10-31 17:59:36 +00:00 
			
		
		
		
	 84e3b9e44b
			
		
	
	
		84e3b9e44b
		
	
	
	
	
		
			
			- 在 LightRAG 类中添加 embedding_cache_config配置项 - 实现基于 embedding 相似度的缓存查询和存储 - 添加量化和反量化函数,用于压缩 embedding 数据 - 新增示例演示 embedding 缓存的使用
		
			
				
	
	
		
			113 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			113 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| import asyncio
 | |
| from lightrag import LightRAG, QueryParam
 | |
| from lightrag.llm import openai_complete_if_cache, openai_embedding
 | |
| from lightrag.utils import EmbeddingFunc
 | |
| import numpy as np
 | |
| 
 | |
| WORKING_DIR = "./dickens"
 | |
| 
 | |
| if not os.path.exists(WORKING_DIR):
 | |
|     os.mkdir(WORKING_DIR)
 | |
| 
 | |
| 
 | |
| async def llm_model_func(
 | |
|     prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
 | |
| ) -> str:
 | |
|     return await openai_complete_if_cache(
 | |
|         "solar-mini",
 | |
|         prompt,
 | |
|         system_prompt=system_prompt,
 | |
|         history_messages=history_messages,
 | |
|         api_key=os.getenv("UPSTAGE_API_KEY"),
 | |
|         base_url="https://api.upstage.ai/v1/solar",
 | |
|         **kwargs,
 | |
|     )
 | |
| 
 | |
| 
 | |
| async def embedding_func(texts: list[str]) -> np.ndarray:
 | |
|     return await openai_embedding(
 | |
|         texts,
 | |
|         model="solar-embedding-1-large-query",
 | |
|         api_key=os.getenv("UPSTAGE_API_KEY"),
 | |
|         base_url="https://api.upstage.ai/v1/solar",
 | |
|     )
 | |
| 
 | |
| 
 | |
| async def get_embedding_dim():
 | |
|     test_text = ["This is a test sentence."]
 | |
|     embedding = await embedding_func(test_text)
 | |
|     embedding_dim = embedding.shape[1]
 | |
|     return embedding_dim
 | |
| 
 | |
| 
 | |
| # function test
 | |
| async def test_funcs():
 | |
|     result = await llm_model_func("How are you?")
 | |
|     print("llm_model_func: ", result)
 | |
| 
 | |
|     result = await embedding_func(["How are you?"])
 | |
|     print("embedding_func: ", result)
 | |
| 
 | |
| 
 | |
| # asyncio.run(test_funcs())
 | |
| 
 | |
| 
 | |
| async def main():
 | |
|     try:
 | |
|         embedding_dimension = await get_embedding_dim()
 | |
|         print(f"Detected embedding dimension: {embedding_dimension}")
 | |
| 
 | |
|         rag = LightRAG(
 | |
|             working_dir=WORKING_DIR,
 | |
|             embedding_cache_config={
 | |
|                 "enabled": True,
 | |
|                 "similarity_threshold": 0.90,
 | |
|             },
 | |
|             llm_model_func=llm_model_func,
 | |
|             embedding_func=EmbeddingFunc(
 | |
|                 embedding_dim=embedding_dimension,
 | |
|                 max_token_size=8192,
 | |
|                 func=embedding_func,
 | |
|             ),
 | |
|         )
 | |
| 
 | |
|         with open("./book.txt", "r", encoding="utf-8") as f:
 | |
|             await rag.ainsert(f.read())
 | |
| 
 | |
|         # Perform naive search
 | |
|         print(
 | |
|             await rag.aquery(
 | |
|                 "What are the top themes in this story?", param=QueryParam(mode="naive")
 | |
|             )
 | |
|         )
 | |
| 
 | |
|         # Perform local search
 | |
|         print(
 | |
|             await rag.aquery(
 | |
|                 "What are the top themes in this story?", param=QueryParam(mode="local")
 | |
|             )
 | |
|         )
 | |
| 
 | |
|         # Perform global search
 | |
|         print(
 | |
|             await rag.aquery(
 | |
|                 "What are the top themes in this story?",
 | |
|                 param=QueryParam(mode="global"),
 | |
|             )
 | |
|         )
 | |
| 
 | |
|         # Perform hybrid search
 | |
|         print(
 | |
|             await rag.aquery(
 | |
|                 "What are the top themes in this story?",
 | |
|                 param=QueryParam(mode="hybrid"),
 | |
|             )
 | |
|         )
 | |
|     except Exception as e:
 | |
|         print(f"An error occurred: {e}")
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     asyncio.run(main())
 |