mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-10-31 09:49:54 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			302 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			302 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import asyncio
 | |
| import html
 | |
| import os
 | |
| from dataclasses import dataclass
 | |
| from typing import Any, Union, cast
 | |
| import networkx as nx
 | |
| import numpy as np
 | |
| from nano_vectordb import NanoVectorDB
 | |
| 
 | |
| from .utils import (
 | |
|     logger,
 | |
|     load_json,
 | |
|     write_json,
 | |
|     compute_mdhash_id,
 | |
| )
 | |
| 
 | |
| from .base import (
 | |
|     BaseGraphStorage,
 | |
|     BaseKVStorage,
 | |
|     BaseVectorStorage,
 | |
| )
 | |
| 
 | |
| 
 | |
| @dataclass
 | |
| class JsonKVStorage(BaseKVStorage):
 | |
|     def __post_init__(self):
 | |
|         working_dir = self.global_config["working_dir"]
 | |
|         self._file_name = os.path.join(working_dir, f"kv_store_{self.namespace}.json")
 | |
|         self._data = load_json(self._file_name) or {}
 | |
|         logger.info(f"Load KV {self.namespace} with {len(self._data)} data")
 | |
| 
 | |
|     async def all_keys(self) -> list[str]:
 | |
|         return list(self._data.keys())
 | |
| 
 | |
|     async def index_done_callback(self):
 | |
|         write_json(self._data, self._file_name)
 | |
| 
 | |
|     async def get_by_id(self, id):
 | |
|         return self._data.get(id, None)
 | |
| 
 | |
|     async def get_by_ids(self, ids, fields=None):
 | |
|         if fields is None:
 | |
|             return [self._data.get(id, None) for id in ids]
 | |
|         return [
 | |
|             (
 | |
|                 {k: v for k, v in self._data[id].items() if k in fields}
 | |
|                 if self._data.get(id, None)
 | |
|                 else None
 | |
|             )
 | |
|             for id in ids
 | |
|         ]
 | |
| 
 | |
|     async def filter_keys(self, data: list[str]) -> set[str]:
 | |
|         return set([s for s in data if s not in self._data])
 | |
| 
 | |
|     async def upsert(self, data: dict[str, dict]):
 | |
|         left_data = {k: v for k, v in data.items() if k not in self._data}
 | |
|         self._data.update(left_data)
 | |
|         return left_data
 | |
| 
 | |
|     async def drop(self):
 | |
|         self._data = {}
 | |
| 
 | |
| 
 | |
| @dataclass
 | |
| class NanoVectorDBStorage(BaseVectorStorage):
 | |
|     cosine_better_than_threshold: float = 0.2
 | |
| 
 | |
|     def __post_init__(self):
 | |
|         self._client_file_name = os.path.join(
 | |
|             self.global_config["working_dir"], f"vdb_{self.namespace}.json"
 | |
|         )
 | |
|         self._max_batch_size = self.global_config["embedding_batch_num"]
 | |
|         self._client = NanoVectorDB(
 | |
|             self.embedding_func.embedding_dim, storage_file=self._client_file_name
 | |
|         )
 | |
|         self.cosine_better_than_threshold = self.global_config.get(
 | |
|             "cosine_better_than_threshold", self.cosine_better_than_threshold
 | |
|         )
 | |
| 
 | |
|     async def upsert(self, data: dict[str, dict]):
 | |
|         logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
 | |
|         if not len(data):
 | |
|             logger.warning("You insert an empty data to vector DB")
 | |
|             return []
 | |
|         list_data = [
 | |
|             {
 | |
|                 "__id__": k,
 | |
|                 **{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
 | |
|             }
 | |
|             for k, v in data.items()
 | |
|         ]
 | |
|         contents = [v["content"] for v in data.values()]
 | |
|         batches = [
 | |
|             contents[i : i + self._max_batch_size]
 | |
|             for i in range(0, len(contents), self._max_batch_size)
 | |
|         ]
 | |
|         embeddings_list = await asyncio.gather(
 | |
|             *[self.embedding_func(batch) for batch in batches]
 | |
|         )
 | |
|         embeddings = np.concatenate(embeddings_list)
 | |
|         for i, d in enumerate(list_data):
 | |
|             d["__vector__"] = embeddings[i]
 | |
|         results = self._client.upsert(datas=list_data)
 | |
|         return results
 | |
| 
 | |
|     async def query(self, query: str, top_k=5):
 | |
|         embedding = await self.embedding_func([query])
 | |
|         embedding = embedding[0]
 | |
|         results = self._client.query(
 | |
|             query=embedding,
 | |
|             top_k=top_k,
 | |
|             better_than_threshold=self.cosine_better_than_threshold,
 | |
|         )
 | |
|         results = [
 | |
|             {**dp, "id": dp["__id__"], "distance": dp["__metrics__"]} for dp in results
 | |
|         ]
 | |
|         return results
 | |
| 
 | |
|     @property
 | |
|     def client_storage(self):
 | |
|         return getattr(self._client, "_NanoVectorDB__storage")
 | |
| 
 | |
|     async def delete_entity(self, entity_name: str):
 | |
|         try:
 | |
|             entity_id = [compute_mdhash_id(entity_name, prefix="ent-")]
 | |
| 
 | |
|             if self._client.get(entity_id):
 | |
|                 self._client.delete(entity_id)
 | |
|                 logger.info(f"Entity {entity_name} have been deleted.")
 | |
|             else:
 | |
|                 logger.info(f"No entity found with name {entity_name}.")
 | |
|         except Exception as e:
 | |
|             logger.error(f"Error while deleting entity {entity_name}: {e}")
 | |
| 
 | |
|     async def delete_relation(self, entity_name: str):
 | |
|         try:
 | |
|             relations = [
 | |
|                 dp
 | |
|                 for dp in self.client_storage["data"]
 | |
|                 if dp["src_id"] == entity_name or dp["tgt_id"] == entity_name
 | |
|             ]
 | |
|             ids_to_delete = [relation["__id__"] for relation in relations]
 | |
| 
 | |
|             if ids_to_delete:
 | |
|                 self._client.delete(ids_to_delete)
 | |
|                 logger.info(
 | |
|                     f"All relations related to entity {entity_name} have been deleted."
 | |
|                 )
 | |
|             else:
 | |
|                 logger.info(f"No relations found for entity {entity_name}.")
 | |
|         except Exception as e:
 | |
|             logger.error(
 | |
|                 f"Error while deleting relations for entity {entity_name}: {e}"
 | |
|             )
 | |
| 
 | |
|     async def index_done_callback(self):
 | |
|         self._client.save()
 | |
| 
 | |
| 
 | |
| @dataclass
 | |
| class NetworkXStorage(BaseGraphStorage):
 | |
|     @staticmethod
 | |
|     def load_nx_graph(file_name) -> nx.Graph:
 | |
|         if os.path.exists(file_name):
 | |
|             return nx.read_graphml(file_name)
 | |
|         return None
 | |
| 
 | |
|     @staticmethod
 | |
|     def write_nx_graph(graph: nx.Graph, file_name):
 | |
|         logger.info(
 | |
|             f"Writing graph with {graph.number_of_nodes()} nodes, {graph.number_of_edges()} edges"
 | |
|         )
 | |
|         nx.write_graphml(graph, file_name)
 | |
| 
 | |
|     @staticmethod
 | |
|     def stable_largest_connected_component(graph: nx.Graph) -> nx.Graph:
 | |
|         """Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
 | |
|         Return the largest connected component of the graph, with nodes and edges sorted in a stable way.
 | |
|         """
 | |
|         from graspologic.utils import largest_connected_component
 | |
| 
 | |
|         graph = graph.copy()
 | |
|         graph = cast(nx.Graph, largest_connected_component(graph))
 | |
|         node_mapping = {
 | |
|             node: html.unescape(node.upper().strip()) for node in graph.nodes()
 | |
|         }  # type: ignore
 | |
|         graph = nx.relabel_nodes(graph, node_mapping)
 | |
|         return NetworkXStorage._stabilize_graph(graph)
 | |
| 
 | |
|     @staticmethod
 | |
|     def _stabilize_graph(graph: nx.Graph) -> nx.Graph:
 | |
|         """Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
 | |
|         Ensure an undirected graph with the same relationships will always be read the same way.
 | |
|         """
 | |
|         fixed_graph = nx.DiGraph() if graph.is_directed() else nx.Graph()
 | |
| 
 | |
|         sorted_nodes = graph.nodes(data=True)
 | |
|         sorted_nodes = sorted(sorted_nodes, key=lambda x: x[0])
 | |
| 
 | |
|         fixed_graph.add_nodes_from(sorted_nodes)
 | |
|         edges = list(graph.edges(data=True))
 | |
| 
 | |
|         if not graph.is_directed():
 | |
| 
 | |
|             def _sort_source_target(edge):
 | |
|                 source, target, edge_data = edge
 | |
|                 if source > target:
 | |
|                     temp = source
 | |
|                     source = target
 | |
|                     target = temp
 | |
|                 return source, target, edge_data
 | |
| 
 | |
|             edges = [_sort_source_target(edge) for edge in edges]
 | |
| 
 | |
|         def _get_edge_key(source: Any, target: Any) -> str:
 | |
|             return f"{source} -> {target}"
 | |
| 
 | |
|         edges = sorted(edges, key=lambda x: _get_edge_key(x[0], x[1]))
 | |
| 
 | |
|         fixed_graph.add_edges_from(edges)
 | |
|         return fixed_graph
 | |
| 
 | |
|     def __post_init__(self):
 | |
|         self._graphml_xml_file = os.path.join(
 | |
|             self.global_config["working_dir"], f"graph_{self.namespace}.graphml"
 | |
|         )
 | |
|         preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file)
 | |
|         if preloaded_graph is not None:
 | |
|             logger.info(
 | |
|                 f"Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges"
 | |
|             )
 | |
|         self._graph = preloaded_graph or nx.Graph()
 | |
|         self._node_embed_algorithms = {
 | |
|             "node2vec": self._node2vec_embed,
 | |
|         }
 | |
| 
 | |
|     async def index_done_callback(self):
 | |
|         NetworkXStorage.write_nx_graph(self._graph, self._graphml_xml_file)
 | |
| 
 | |
|     async def has_node(self, node_id: str) -> bool:
 | |
|         return self._graph.has_node(node_id)
 | |
| 
 | |
|     async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
 | |
|         return self._graph.has_edge(source_node_id, target_node_id)
 | |
| 
 | |
|     async def get_node(self, node_id: str) -> Union[dict, None]:
 | |
|         return self._graph.nodes.get(node_id)
 | |
| 
 | |
|     async def node_degree(self, node_id: str) -> int:
 | |
|         return self._graph.degree(node_id)
 | |
| 
 | |
|     async def edge_degree(self, src_id: str, tgt_id: str) -> int:
 | |
|         return self._graph.degree(src_id) + self._graph.degree(tgt_id)
 | |
| 
 | |
|     async def get_edge(
 | |
|         self, source_node_id: str, target_node_id: str
 | |
|     ) -> Union[dict, None]:
 | |
|         return self._graph.edges.get((source_node_id, target_node_id))
 | |
| 
 | |
|     async def get_node_edges(self, source_node_id: str):
 | |
|         if self._graph.has_node(source_node_id):
 | |
|             return list(self._graph.edges(source_node_id))
 | |
|         return None
 | |
| 
 | |
|     async def upsert_node(self, node_id: str, node_data: dict[str, str]):
 | |
|         self._graph.add_node(node_id, **node_data)
 | |
| 
 | |
|     async def upsert_edge(
 | |
|         self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
 | |
|     ):
 | |
|         self._graph.add_edge(source_node_id, target_node_id, **edge_data)
 | |
| 
 | |
|     async def delete_node(self, node_id: str):
 | |
|         """
 | |
|         Delete a node from the graph based on the specified node_id.
 | |
| 
 | |
|         :param node_id: The node_id to delete
 | |
|         """
 | |
|         if self._graph.has_node(node_id):
 | |
|             self._graph.remove_node(node_id)
 | |
|             logger.info(f"Node {node_id} deleted from the graph.")
 | |
|         else:
 | |
|             logger.warning(f"Node {node_id} not found in the graph for deletion.")
 | |
| 
 | |
|     async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
 | |
|         if algorithm not in self._node_embed_algorithms:
 | |
|             raise ValueError(f"Node embedding algorithm {algorithm} not supported")
 | |
|         return await self._node_embed_algorithms[algorithm]()
 | |
| 
 | |
|     # @TODO: NOT USED
 | |
|     async def _node2vec_embed(self):
 | |
|         from graspologic import embed
 | |
| 
 | |
|         embeddings, nodes = embed.node2vec_embed(
 | |
|             self._graph,
 | |
|             **self.global_config["node2vec_params"],
 | |
|         )
 | |
| 
 | |
|         nodes_ids = [self._graph.nodes[node_id]["id"] for node_id in nodes]
 | |
|         return embeddings, nodes_ids
 | 
