LightRAG/env.example
yangdx 75d1b1e9f8 Update Ollama context length configuration
- Rename OLLAMA_NUM_CTX to OLLAMA_LLM_NUM_CTX
- Increase default context window size
- Add requirement for minimum context size
- Update documentation examples
2025-07-29 09:53:37 +08:00

262 lines
8.6 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

### This is sample file of .env
###########################
### Server Configuration
###########################
HOST=0.0.0.0
PORT=9621
WEBUI_TITLE='My Graph KB'
WEBUI_DESCRIPTION="Simple and Fast Graph Based RAG System"
# WORKERS=2
# CORS_ORIGINS=http://localhost:3000,http://localhost:8080
### Optional SSL Configuration
# SSL=true
# SSL_CERTFILE=/path/to/cert.pem
# SSL_KEYFILE=/path/to/key.pem
### Directory Configuration (defaults to current working directory)
### Default value is ./inputs and ./rag_storage
# INPUT_DIR=<absolute_path_for_doc_input_dir>
# WORKING_DIR=<absolute_path_for_working_dir>
### Ollama Emulating Model and Tag
# OLLAMA_EMULATING_MODEL_NAME=lightrag
OLLAMA_EMULATING_MODEL_TAG=latest
### Max nodes return from grap retrieval in webui
# MAX_GRAPH_NODES=1000
### Logging level
# LOG_LEVEL=INFO
# VERBOSE=False
# LOG_MAX_BYTES=10485760
# LOG_BACKUP_COUNT=5
### Logfile location (defaults to current working directory)
# LOG_DIR=/path/to/log/directory
#####################################
### Login and API-Key Configuration
#####################################
# AUTH_ACCOUNTS='admin:admin123,user1:pass456'
# TOKEN_SECRET=Your-Key-For-LightRAG-API-Server
# TOKEN_EXPIRE_HOURS=48
# GUEST_TOKEN_EXPIRE_HOURS=24
# JWT_ALGORITHM=HS256
### API-Key to access LightRAG Server API
# LIGHTRAG_API_KEY=your-secure-api-key-here
# WHITELIST_PATHS=/health,/api/*
########################
### Query Configuration
########################
# LLM responde cache for query (Not valid for streaming response)
ENABLE_LLM_CACHE=true
# HISTORY_TURNS=0
# COSINE_THRESHOLD=0.2
### Number of entities or relations retrieved from KG
# TOP_K=40
### Maxmium number or chunks plan to send to LLM
# CHUNK_TOP_K=10
### control the actual enties send to LLM
# MAX_ENTITY_TOKENS=10000
### control the actual relations send to LLM
# MAX_RELATION_TOKENS=10000
### control the maximum tokens send to LLM (include entities, raltions and chunks)
# MAX_TOTAL_TOKENS=30000
### maximum number of related chunks per source entity or relation (higher values increase re-ranking time)
# RELATED_CHUNK_NUMBER=5
### Reranker configuration (Set ENABLE_RERANK to true in reranking model is configed)
# ENABLE_RERANK=True
### Minimum rerank score for document chunk exclusion (set to 0.0 to keep all chunks, 0.6 or above if LLM is not strong enought)
# MIN_RERANK_SCORE=0.0
### Rerank model configuration (required when ENABLE_RERANK=True)
# RERANK_MODEL=jina-reranker-v2-base-multilingual
# RERANK_BINDING_HOST=https://api.jina.ai/v1/rerank
# RERANK_BINDING_API_KEY=your_rerank_api_key_here
########################################
### Document processing configuration
########################################
### Language: English, Chinese, French, German ...
SUMMARY_LANGUAGE=English
ENABLE_LLM_CACHE_FOR_EXTRACT=true
### Chunk size for document splitting, 500~1500 is recommended
# CHUNK_SIZE=1200
# CHUNK_OVERLAP_SIZE=100
### Entity and relation summarization configuration
### Number of duplicated entities/edges to trigger LLM re-summary on merge (at least 3 is recommented) and max tokens send to LLM
# FORCE_LLM_SUMMARY_ON_MERGE=4
# MAX_TOKENS=10000
### Maximum number of entity extraction attempts for ambiguous content
# MAX_GLEANING=1
###############################
### Concurrency Configuration
###############################
### Max concurrency requests of LLM (for both query and document processing)
MAX_ASYNC=4
### Number of parallel processing documents(between 2~10, MAX_ASYNC/3 is recommended)
MAX_PARALLEL_INSERT=2
### Max concurrency requests for Embedding
# EMBEDDING_FUNC_MAX_ASYNC=8
### Num of chunks send to Embedding in single request
# EMBEDDING_BATCH_NUM=10
#######################
### LLM Configuration
#######################
### Time out in seconds for LLM, None for infinite timeout
TIMEOUT=240
### Some models like o1-mini require temperature to be set to 1
TEMPERATURE=0
### LLM Binding type: openai, ollama, lollms, azure_openai
LLM_BINDING=openai
LLM_MODEL=gpt-4o
LLM_BINDING_HOST=https://api.openai.com/v1
LLM_BINDING_API_KEY=your_api_key
### Set as num_ctx option for Ollama LLM (Must be larger than MAX_TOTAL_TOKENS+2000)
### see also env.ollama-binding-options.example for fine tuning ollama
# OLLAMA_LLM_NUM_CTX=32768
### Optional for Azure
# AZURE_OPENAI_API_VERSION=2024-08-01-preview
# AZURE_OPENAI_DEPLOYMENT=gpt-4o
####################################################################################
### Embedding Configuration (Should not be changed after the first file processed)
####################################################################################
### Embedding Binding type: openai, ollama, lollms, azure_openai, jina
EMBEDDING_BINDING=ollama
EMBEDDING_MODEL=bge-m3:latest
EMBEDDING_DIM=1024
EMBEDDING_BINDING_API_KEY=your_api_key
# If the embedding service is deployed within the same Docker stack, use host.docker.internal instead of localhost
EMBEDDING_BINDING_HOST=http://localhost:11434
### Maximum tokens sent to Embedding for each chunk (no longer in use?)
# MAX_EMBED_TOKENS=8192
### OpenAI compatible
# EMBEDDING_BINDING=openai
# EMBEDDING_MODEL=text-embedding-3-large
# EMBEDDING_DIM=3072
# EMBEDDING_BINDING_HOST=https://api.openai.com
# EMBEDDING_BINDING_API_KEY=your_api_key
### Optional for Azure
# AZURE_EMBEDDING_DEPLOYMENT=text-embedding-3-large
# AZURE_EMBEDDING_API_VERSION=2023-05-15
# AZURE_EMBEDDING_ENDPOINT=your_endpoint
# AZURE_EMBEDDING_API_KEY=your_api_key
### Jina AI Embedding
EMBEDDING_BINDING=jina
EMBEDDING_BINDING_HOST=https://api.jina.ai/v1/embeddings
EMBEDDING_MODEL=jina-embeddings-v4
EMBEDDING_DIM=2048
EMBEDDING_BINDING_API_KEY=your_api_key
####################################################################
### WORKSPACE setting workspace name for all storage types
### in the purpose of isolating data from LightRAG instances.
### Valid workspace name constraints: a-z, A-Z, 0-9, and _
####################################################################
# WORKSPACE=space1
############################
### Data storage selection
############################
### Default storage (Recommended for small scale deployment)
# LIGHTRAG_KV_STORAGE=JsonKVStorage
# LIGHTRAG_DOC_STATUS_STORAGE=JsonDocStatusStorage
# LIGHTRAG_GRAPH_STORAGE=NetworkXStorage
# LIGHTRAG_VECTOR_STORAGE=NanoVectorDBStorage
### Redis Storage (Recommended for production deployment)
# LIGHTRAG_KV_STORAGE=RedisKVStorage
# LIGHTRAG_DOC_STATUS_STORAGE=RedisDocStatusStorage
### Vector Storage (Recommended for production deployment)
# LIGHTRAG_VECTOR_STORAGE=MilvusVectorDBStorage
# LIGHTRAG_VECTOR_STORAGE=QdrantVectorDBStorage
# LIGHTRAG_VECTOR_STORAGE=FaissVectorDBStorage
### Graph Storage (Recommended for production deployment)
# LIGHTRAG_GRAPH_STORAGE=Neo4JStorage
# LIGHTRAG_GRAPH_STORAGE=MemgraphStorage
### PostgreSQL
# LIGHTRAG_KV_STORAGE=PGKVStorage
# LIGHTRAG_DOC_STATUS_STORAGE=PGDocStatusStorage
# LIGHTRAG_GRAPH_STORAGE=PGGraphStorage
# LIGHTRAG_VECTOR_STORAGE=PGVectorStorage
### MongoDB (Vector storage only available on Atlas Cloud)
# LIGHTRAG_KV_STORAGE=MongoKVStorage
# LIGHTRAG_DOC_STATUS_STORAGE=MongoDocStatusStorage
# LIGHTRAG_GRAPH_STORAGE=MongoGraphStorage
# LIGHTRAG_VECTOR_STORAGE=MongoVectorDBStorage
### PostgreSQL Configuration
POSTGRES_HOST=localhost
POSTGRES_PORT=5432
POSTGRES_USER=your_username
POSTGRES_PASSWORD='your_password'
POSTGRES_DATABASE=your_database
POSTGRES_MAX_CONNECTIONS=12
# POSTGRES_WORKSPACE=forced_workspace_name
### PostgreSQL SSL Configuration (Optional)
# POSTGRES_SSL_MODE=require
# POSTGRES_SSL_CERT=/path/to/client-cert.pem
# POSTGRES_SSL_KEY=/path/to/client-key.pem
# POSTGRES_SSL_ROOT_CERT=/path/to/ca-cert.pem
# POSTGRES_SSL_CRL=/path/to/crl.pem
### Neo4j Configuration
NEO4J_URI=neo4j+s://xxxxxxxx.databases.neo4j.io
NEO4J_USERNAME=neo4j
NEO4J_PASSWORD='your_password'
NEO4J_MAX_CONNECTION_POOL_SIZE=100
NEO4J_CONNECTION_TIMEOUT=30
NEO4J_CONNECTION_ACQUISITION_TIMEOUT=30
MAX_TRANSACTION_RETRY_TIME=30
# NEO4J_WORKSPACE=forced_workspace_name
### MongoDB Configuration
MONGO_URI=mongodb://root:root@localhost:27017/
#MONGO_URI=mongodb+srv://xxxx
MONGO_DATABASE=LightRAG
# MONGODB_WORKSPACE=forced_workspace_name
### Milvus Configuration
MILVUS_URI=http://localhost:19530
MILVUS_DB_NAME=lightrag
# MILVUS_USER=root
# MILVUS_PASSWORD=your_password
# MILVUS_TOKEN=your_token
# MILVUS_WORKSPACE=forced_workspace_name
### Qdrant
QDRANT_URL=http://localhost:6333
# QDRANT_API_KEY=your-api-key
# QDRANT_WORKSPACE=forced_workspace_name
### Redis
REDIS_URI=redis://localhost:6379
REDIS_SOCKET_TIMEOUT=30
REDIS_CONNECT_TIMEOUT=10
REDIS_MAX_CONNECTIONS=100
REDIS_RETRY_ATTEMPTS=3
# REDIS_WORKSPACE=forced_workspace_name
### Memgraph Configuration
MEMGRAPH_URI=bolt://localhost:7687
MEMGRAPH_USERNAME=
MEMGRAPH_PASSWORD=
MEMGRAPH_DATABASE=memgraph
# MEMGRAPH_WORKSPACE=forced_workspace_name