mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-06 16:41:18 +00:00
2088 lines
69 KiB
Python
2088 lines
69 KiB
Python
from __future__ import annotations
|
||
|
||
import asyncio
|
||
import json
|
||
import re
|
||
import os
|
||
from typing import Any, AsyncIterator
|
||
from collections import Counter, defaultdict
|
||
|
||
from .utils import (
|
||
logger,
|
||
clean_str,
|
||
compute_mdhash_id,
|
||
decode_tokens_by_tiktoken,
|
||
encode_string_by_tiktoken,
|
||
is_float_regex,
|
||
list_of_list_to_csv,
|
||
pack_user_ass_to_openai_messages,
|
||
split_string_by_multi_markers,
|
||
truncate_list_by_token_size,
|
||
process_combine_contexts,
|
||
compute_args_hash,
|
||
handle_cache,
|
||
save_to_cache,
|
||
CacheData,
|
||
statistic_data,
|
||
get_conversation_turns,
|
||
verbose_debug,
|
||
)
|
||
from .base import (
|
||
BaseGraphStorage,
|
||
BaseKVStorage,
|
||
BaseVectorStorage,
|
||
TextChunkSchema,
|
||
QueryParam,
|
||
)
|
||
from .prompt import GRAPH_FIELD_SEP, PROMPTS
|
||
import time
|
||
from dotenv import load_dotenv
|
||
|
||
# use the .env that is inside the current folder
|
||
# allows to use different .env file for each lightrag instance
|
||
# the OS environment variables take precedence over the .env file
|
||
load_dotenv(dotenv_path=".env", override=False)
|
||
|
||
|
||
def chunking_by_token_size(
|
||
content: str,
|
||
split_by_character: str | None = None,
|
||
split_by_character_only: bool = False,
|
||
overlap_token_size: int = 128,
|
||
max_token_size: int = 1024,
|
||
tiktoken_model: str = "gpt-4o",
|
||
) -> list[dict[str, Any]]:
|
||
tokens = encode_string_by_tiktoken(content, model_name=tiktoken_model)
|
||
results: list[dict[str, Any]] = []
|
||
if split_by_character:
|
||
raw_chunks = content.split(split_by_character)
|
||
new_chunks = []
|
||
if split_by_character_only:
|
||
for chunk in raw_chunks:
|
||
_tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
|
||
new_chunks.append((len(_tokens), chunk))
|
||
else:
|
||
for chunk in raw_chunks:
|
||
_tokens = encode_string_by_tiktoken(chunk, model_name=tiktoken_model)
|
||
if len(_tokens) > max_token_size:
|
||
for start in range(
|
||
0, len(_tokens), max_token_size - overlap_token_size
|
||
):
|
||
chunk_content = decode_tokens_by_tiktoken(
|
||
_tokens[start : start + max_token_size],
|
||
model_name=tiktoken_model,
|
||
)
|
||
new_chunks.append(
|
||
(min(max_token_size, len(_tokens) - start), chunk_content)
|
||
)
|
||
else:
|
||
new_chunks.append((len(_tokens), chunk))
|
||
for index, (_len, chunk) in enumerate(new_chunks):
|
||
results.append(
|
||
{
|
||
"tokens": _len,
|
||
"content": chunk.strip(),
|
||
"chunk_order_index": index,
|
||
}
|
||
)
|
||
else:
|
||
for index, start in enumerate(
|
||
range(0, len(tokens), max_token_size - overlap_token_size)
|
||
):
|
||
chunk_content = decode_tokens_by_tiktoken(
|
||
tokens[start : start + max_token_size], model_name=tiktoken_model
|
||
)
|
||
results.append(
|
||
{
|
||
"tokens": min(max_token_size, len(tokens) - start),
|
||
"content": chunk_content.strip(),
|
||
"chunk_order_index": index,
|
||
}
|
||
)
|
||
return results
|
||
|
||
|
||
async def _handle_entity_relation_summary(
|
||
entity_or_relation_name: str,
|
||
description: str,
|
||
global_config: dict,
|
||
) -> str:
|
||
"""Handle entity relation summary
|
||
For each entity or relation, input is the combined description of already existing description and new description.
|
||
If too long, use LLM to summarize.
|
||
"""
|
||
use_llm_func: callable = global_config["llm_model_func"]
|
||
llm_max_tokens = global_config["llm_model_max_token_size"]
|
||
tiktoken_model_name = global_config["tiktoken_model_name"]
|
||
summary_max_tokens = global_config["entity_summary_to_max_tokens"]
|
||
language = global_config["addon_params"].get(
|
||
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
||
)
|
||
|
||
tokens = encode_string_by_tiktoken(description, model_name=tiktoken_model_name)
|
||
if len(tokens) < summary_max_tokens: # No need for summary
|
||
return description
|
||
prompt_template = PROMPTS["summarize_entity_descriptions"]
|
||
use_description = decode_tokens_by_tiktoken(
|
||
tokens[:llm_max_tokens], model_name=tiktoken_model_name
|
||
)
|
||
context_base = dict(
|
||
entity_name=entity_or_relation_name,
|
||
description_list=use_description.split(GRAPH_FIELD_SEP),
|
||
language=language,
|
||
)
|
||
use_prompt = prompt_template.format(**context_base)
|
||
logger.debug(f"Trigger summary: {entity_or_relation_name}")
|
||
summary = await use_llm_func(use_prompt, max_tokens=summary_max_tokens)
|
||
return summary
|
||
|
||
|
||
async def _handle_single_entity_extraction(
|
||
record_attributes: list[str],
|
||
chunk_key: str,
|
||
file_path: str = "unknown_source",
|
||
):
|
||
if len(record_attributes) < 4 or record_attributes[0] != '"entity"':
|
||
return None
|
||
|
||
# Clean and validate entity name
|
||
entity_name = clean_str(record_attributes[1]).strip('"')
|
||
if not entity_name.strip():
|
||
logger.warning(
|
||
f"Entity extraction error: empty entity name in: {record_attributes}"
|
||
)
|
||
return None
|
||
|
||
# Clean and validate entity type
|
||
entity_type = clean_str(record_attributes[2]).strip('"')
|
||
if not entity_type.strip() or entity_type.startswith('("'):
|
||
logger.warning(
|
||
f"Entity extraction error: invalid entity type in: {record_attributes}"
|
||
)
|
||
return None
|
||
|
||
# Clean and validate description
|
||
entity_description = clean_str(record_attributes[3]).strip('"')
|
||
if not entity_description.strip():
|
||
logger.warning(
|
||
f"Entity extraction error: empty description for entity '{entity_name}' of type '{entity_type}'"
|
||
)
|
||
return None
|
||
|
||
return dict(
|
||
entity_name=entity_name,
|
||
entity_type=entity_type,
|
||
description=entity_description,
|
||
source_id=chunk_key,
|
||
file_path=file_path,
|
||
)
|
||
|
||
|
||
async def _handle_single_relationship_extraction(
|
||
record_attributes: list[str],
|
||
chunk_key: str,
|
||
file_path: str = "unknown_source",
|
||
):
|
||
if len(record_attributes) < 5 or record_attributes[0] != '"relationship"':
|
||
return None
|
||
# add this record as edge
|
||
source = clean_str(record_attributes[1]).strip('"')
|
||
target = clean_str(record_attributes[2]).strip('"')
|
||
edge_description = clean_str(record_attributes[3]).strip('"')
|
||
edge_keywords = clean_str(record_attributes[4]).strip('"')
|
||
edge_source_id = chunk_key
|
||
weight = (
|
||
float(record_attributes[-1].strip('"'))
|
||
if is_float_regex(record_attributes[-1])
|
||
else 1.0
|
||
)
|
||
return dict(
|
||
src_id=source,
|
||
tgt_id=target,
|
||
weight=weight,
|
||
description=edge_description,
|
||
keywords=edge_keywords,
|
||
source_id=edge_source_id,
|
||
file_path=file_path,
|
||
)
|
||
|
||
|
||
async def _merge_nodes_then_upsert(
|
||
entity_name: str,
|
||
nodes_data: list[dict],
|
||
knowledge_graph_inst: BaseGraphStorage,
|
||
global_config: dict,
|
||
):
|
||
"""Get existing nodes from knowledge graph use name,if exists, merge data, else create, then upsert."""
|
||
already_entity_types = []
|
||
already_source_ids = []
|
||
already_description = []
|
||
already_file_paths = []
|
||
|
||
already_node = await knowledge_graph_inst.get_node(entity_name)
|
||
if already_node is not None:
|
||
already_entity_types.append(already_node["entity_type"])
|
||
already_source_ids.extend(
|
||
split_string_by_multi_markers(already_node["source_id"], [GRAPH_FIELD_SEP])
|
||
)
|
||
already_file_paths.extend(
|
||
split_string_by_multi_markers(already_node["file_path"], [GRAPH_FIELD_SEP])
|
||
)
|
||
already_description.append(already_node["description"])
|
||
|
||
entity_type = sorted(
|
||
Counter(
|
||
[dp["entity_type"] for dp in nodes_data] + already_entity_types
|
||
).items(),
|
||
key=lambda x: x[1],
|
||
reverse=True,
|
||
)[0][0]
|
||
description = GRAPH_FIELD_SEP.join(
|
||
sorted(set([dp["description"] for dp in nodes_data] + already_description))
|
||
)
|
||
source_id = GRAPH_FIELD_SEP.join(
|
||
set([dp["source_id"] for dp in nodes_data] + already_source_ids)
|
||
)
|
||
file_path = GRAPH_FIELD_SEP.join(
|
||
set([dp["file_path"] for dp in nodes_data] + already_file_paths)
|
||
)
|
||
|
||
logger.debug(f"file_path: {file_path}")
|
||
description = await _handle_entity_relation_summary(
|
||
entity_name, description, global_config
|
||
)
|
||
node_data = dict(
|
||
entity_id=entity_name,
|
||
entity_type=entity_type,
|
||
description=description,
|
||
source_id=source_id,
|
||
file_path=file_path,
|
||
)
|
||
await knowledge_graph_inst.upsert_node(
|
||
entity_name,
|
||
node_data=node_data,
|
||
)
|
||
node_data["entity_name"] = entity_name
|
||
return node_data
|
||
|
||
|
||
async def _merge_edges_then_upsert(
|
||
src_id: str,
|
||
tgt_id: str,
|
||
edges_data: list[dict],
|
||
knowledge_graph_inst: BaseGraphStorage,
|
||
global_config: dict,
|
||
):
|
||
already_weights = []
|
||
already_source_ids = []
|
||
already_description = []
|
||
already_keywords = []
|
||
already_file_paths = []
|
||
|
||
if await knowledge_graph_inst.has_edge(src_id, tgt_id):
|
||
already_edge = await knowledge_graph_inst.get_edge(src_id, tgt_id)
|
||
# Handle the case where get_edge returns None or missing fields
|
||
if already_edge:
|
||
# Get weight with default 0.0 if missing
|
||
already_weights.append(already_edge.get("weight", 0.0))
|
||
|
||
# Get source_id with empty string default if missing or None
|
||
if already_edge.get("source_id") is not None:
|
||
already_source_ids.extend(
|
||
split_string_by_multi_markers(
|
||
already_edge["source_id"], [GRAPH_FIELD_SEP]
|
||
)
|
||
)
|
||
|
||
# Get file_path with empty string default if missing or None
|
||
if already_edge.get("file_path") is not None:
|
||
already_file_paths.extend(
|
||
split_string_by_multi_markers(
|
||
already_edge["file_path"], [GRAPH_FIELD_SEP]
|
||
)
|
||
)
|
||
|
||
# Get description with empty string default if missing or None
|
||
if already_edge.get("description") is not None:
|
||
already_description.append(already_edge["description"])
|
||
|
||
# Get keywords with empty string default if missing or None
|
||
if already_edge.get("keywords") is not None:
|
||
already_keywords.extend(
|
||
split_string_by_multi_markers(
|
||
already_edge["keywords"], [GRAPH_FIELD_SEP]
|
||
)
|
||
)
|
||
|
||
# Process edges_data with None checks
|
||
weight = sum([dp["weight"] for dp in edges_data] + already_weights)
|
||
description = GRAPH_FIELD_SEP.join(
|
||
sorted(
|
||
set(
|
||
[dp["description"] for dp in edges_data if dp.get("description")]
|
||
+ already_description
|
||
)
|
||
)
|
||
)
|
||
keywords = GRAPH_FIELD_SEP.join(
|
||
sorted(
|
||
set(
|
||
[dp["keywords"] for dp in edges_data if dp.get("keywords")]
|
||
+ already_keywords
|
||
)
|
||
)
|
||
)
|
||
source_id = GRAPH_FIELD_SEP.join(
|
||
set(
|
||
[dp["source_id"] for dp in edges_data if dp.get("source_id")]
|
||
+ already_source_ids
|
||
)
|
||
)
|
||
file_path = GRAPH_FIELD_SEP.join(
|
||
set(
|
||
[dp["file_path"] for dp in edges_data if dp.get("file_path")]
|
||
+ already_file_paths
|
||
)
|
||
)
|
||
|
||
for need_insert_id in [src_id, tgt_id]:
|
||
if not (await knowledge_graph_inst.has_node(need_insert_id)):
|
||
await knowledge_graph_inst.upsert_node(
|
||
need_insert_id,
|
||
node_data={
|
||
"entity_id": need_insert_id,
|
||
"source_id": source_id,
|
||
"description": description,
|
||
"entity_type": "UNKNOWN",
|
||
"file_path": file_path,
|
||
},
|
||
)
|
||
description = await _handle_entity_relation_summary(
|
||
f"({src_id}, {tgt_id})", description, global_config
|
||
)
|
||
await knowledge_graph_inst.upsert_edge(
|
||
src_id,
|
||
tgt_id,
|
||
edge_data=dict(
|
||
weight=weight,
|
||
description=description,
|
||
keywords=keywords,
|
||
source_id=source_id,
|
||
file_path=file_path,
|
||
),
|
||
)
|
||
|
||
edge_data = dict(
|
||
src_id=src_id,
|
||
tgt_id=tgt_id,
|
||
description=description,
|
||
keywords=keywords,
|
||
source_id=source_id,
|
||
file_path=file_path,
|
||
)
|
||
|
||
return edge_data
|
||
|
||
|
||
async def extract_entities(
|
||
chunks: dict[str, TextChunkSchema],
|
||
knowledge_graph_inst: BaseGraphStorage,
|
||
entity_vdb: BaseVectorStorage,
|
||
relationships_vdb: BaseVectorStorage,
|
||
global_config: dict[str, str],
|
||
pipeline_status: dict = None,
|
||
pipeline_status_lock=None,
|
||
llm_response_cache: BaseKVStorage | None = None,
|
||
) -> None:
|
||
use_llm_func: callable = global_config["llm_model_func"]
|
||
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
|
||
enable_llm_cache_for_entity_extract: bool = global_config[
|
||
"enable_llm_cache_for_entity_extract"
|
||
]
|
||
|
||
ordered_chunks = list(chunks.items())
|
||
# add language and example number params to prompt
|
||
language = global_config["addon_params"].get(
|
||
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
||
)
|
||
entity_types = global_config["addon_params"].get(
|
||
"entity_types", PROMPTS["DEFAULT_ENTITY_TYPES"]
|
||
)
|
||
example_number = global_config["addon_params"].get("example_number", None)
|
||
if example_number and example_number < len(PROMPTS["entity_extraction_examples"]):
|
||
examples = "\n".join(
|
||
PROMPTS["entity_extraction_examples"][: int(example_number)]
|
||
)
|
||
else:
|
||
examples = "\n".join(PROMPTS["entity_extraction_examples"])
|
||
|
||
example_context_base = dict(
|
||
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
|
||
record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
|
||
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
|
||
entity_types=", ".join(entity_types),
|
||
language=language,
|
||
)
|
||
# add example's format
|
||
examples = examples.format(**example_context_base)
|
||
|
||
entity_extract_prompt = PROMPTS["entity_extraction"]
|
||
context_base = dict(
|
||
tuple_delimiter=PROMPTS["DEFAULT_TUPLE_DELIMITER"],
|
||
record_delimiter=PROMPTS["DEFAULT_RECORD_DELIMITER"],
|
||
completion_delimiter=PROMPTS["DEFAULT_COMPLETION_DELIMITER"],
|
||
entity_types=",".join(entity_types),
|
||
examples=examples,
|
||
language=language,
|
||
)
|
||
|
||
continue_prompt = PROMPTS["entity_continue_extraction"].format(**context_base)
|
||
if_loop_prompt = PROMPTS["entity_if_loop_extraction"]
|
||
|
||
processed_chunks = 0
|
||
total_chunks = len(ordered_chunks)
|
||
|
||
async def _user_llm_func_with_cache(
|
||
input_text: str, history_messages: list[dict[str, str]] = None
|
||
) -> str:
|
||
if enable_llm_cache_for_entity_extract and llm_response_cache:
|
||
if history_messages:
|
||
history = json.dumps(history_messages, ensure_ascii=False)
|
||
_prompt = history + "\n" + input_text
|
||
else:
|
||
_prompt = input_text
|
||
|
||
# TODO: add cache_type="extract"
|
||
arg_hash = compute_args_hash(_prompt)
|
||
cached_return, _1, _2, _3 = await handle_cache(
|
||
llm_response_cache,
|
||
arg_hash,
|
||
_prompt,
|
||
"default",
|
||
cache_type="extract",
|
||
)
|
||
if cached_return:
|
||
logger.debug(f"Found cache for {arg_hash}")
|
||
statistic_data["llm_cache"] += 1
|
||
return cached_return
|
||
statistic_data["llm_call"] += 1
|
||
if history_messages:
|
||
res: str = await use_llm_func(
|
||
input_text, history_messages=history_messages
|
||
)
|
||
else:
|
||
res: str = await use_llm_func(input_text)
|
||
await save_to_cache(
|
||
llm_response_cache,
|
||
CacheData(
|
||
args_hash=arg_hash,
|
||
content=res,
|
||
prompt=_prompt,
|
||
cache_type="extract",
|
||
),
|
||
)
|
||
return res
|
||
|
||
if history_messages:
|
||
return await use_llm_func(input_text, history_messages=history_messages)
|
||
else:
|
||
return await use_llm_func(input_text)
|
||
|
||
async def _process_extraction_result(
|
||
result: str, chunk_key: str, file_path: str = "unknown_source"
|
||
):
|
||
"""Process a single extraction result (either initial or gleaning)
|
||
Args:
|
||
result (str): The extraction result to process
|
||
chunk_key (str): The chunk key for source tracking
|
||
file_path (str): The file path for citation
|
||
Returns:
|
||
tuple: (nodes_dict, edges_dict) containing the extracted entities and relationships
|
||
"""
|
||
maybe_nodes = defaultdict(list)
|
||
maybe_edges = defaultdict(list)
|
||
|
||
records = split_string_by_multi_markers(
|
||
result,
|
||
[context_base["record_delimiter"], context_base["completion_delimiter"]],
|
||
)
|
||
|
||
for record in records:
|
||
record = re.search(r"\((.*)\)", record)
|
||
if record is None:
|
||
continue
|
||
record = record.group(1)
|
||
record_attributes = split_string_by_multi_markers(
|
||
record, [context_base["tuple_delimiter"]]
|
||
)
|
||
|
||
if_entities = await _handle_single_entity_extraction(
|
||
record_attributes, chunk_key, file_path
|
||
)
|
||
if if_entities is not None:
|
||
maybe_nodes[if_entities["entity_name"]].append(if_entities)
|
||
continue
|
||
|
||
if_relation = await _handle_single_relationship_extraction(
|
||
record_attributes, chunk_key, file_path
|
||
)
|
||
if if_relation is not None:
|
||
maybe_edges[(if_relation["src_id"], if_relation["tgt_id"])].append(
|
||
if_relation
|
||
)
|
||
|
||
return maybe_nodes, maybe_edges
|
||
|
||
async def _process_single_content(chunk_key_dp: tuple[str, TextChunkSchema]):
|
||
"""Process a single chunk
|
||
Args:
|
||
chunk_key_dp (tuple[str, TextChunkSchema]):
|
||
("chunk-xxxxxx", {"tokens": int, "content": str, "full_doc_id": str, "chunk_order_index": int})
|
||
"""
|
||
nonlocal processed_chunks
|
||
chunk_key = chunk_key_dp[0]
|
||
chunk_dp = chunk_key_dp[1]
|
||
content = chunk_dp["content"]
|
||
# Get file path from chunk data or use default
|
||
file_path = chunk_dp.get("file_path", "unknown_source")
|
||
|
||
# Get initial extraction
|
||
hint_prompt = entity_extract_prompt.format(
|
||
**context_base, input_text="{input_text}"
|
||
).format(**context_base, input_text=content)
|
||
|
||
final_result = await _user_llm_func_with_cache(hint_prompt)
|
||
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
|
||
|
||
# Process initial extraction with file path
|
||
maybe_nodes, maybe_edges = await _process_extraction_result(
|
||
final_result, chunk_key, file_path
|
||
)
|
||
|
||
# Process additional gleaning results
|
||
for now_glean_index in range(entity_extract_max_gleaning):
|
||
glean_result = await _user_llm_func_with_cache(
|
||
continue_prompt, history_messages=history
|
||
)
|
||
|
||
history += pack_user_ass_to_openai_messages(continue_prompt, glean_result)
|
||
|
||
# Process gleaning result separately with file path
|
||
glean_nodes, glean_edges = await _process_extraction_result(
|
||
glean_result, chunk_key, file_path
|
||
)
|
||
|
||
# Merge results
|
||
for entity_name, entities in glean_nodes.items():
|
||
maybe_nodes[entity_name].extend(entities)
|
||
for edge_key, edges in glean_edges.items():
|
||
maybe_edges[edge_key].extend(edges)
|
||
|
||
if now_glean_index == entity_extract_max_gleaning - 1:
|
||
break
|
||
|
||
if_loop_result: str = await _user_llm_func_with_cache(
|
||
if_loop_prompt, history_messages=history
|
||
)
|
||
if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
|
||
if if_loop_result != "yes":
|
||
break
|
||
|
||
processed_chunks += 1
|
||
entities_count = len(maybe_nodes)
|
||
relations_count = len(maybe_edges)
|
||
log_message = f" Chunk {processed_chunks}/{total_chunks}: extracted {entities_count} entities and {relations_count} relationships (deduplicated)"
|
||
logger.info(log_message)
|
||
if pipeline_status is not None:
|
||
async with pipeline_status_lock:
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
return dict(maybe_nodes), dict(maybe_edges)
|
||
|
||
tasks = [_process_single_content(c) for c in ordered_chunks]
|
||
results = await asyncio.gather(*tasks)
|
||
|
||
maybe_nodes = defaultdict(list)
|
||
maybe_edges = defaultdict(list)
|
||
for m_nodes, m_edges in results:
|
||
for k, v in m_nodes.items():
|
||
maybe_nodes[k].extend(v)
|
||
for k, v in m_edges.items():
|
||
maybe_edges[tuple(sorted(k))].extend(v)
|
||
|
||
from .kg.shared_storage import get_graph_db_lock
|
||
|
||
graph_db_lock = get_graph_db_lock(enable_logging=False)
|
||
|
||
# Ensure that nodes and edges are merged and upserted atomically
|
||
async with graph_db_lock:
|
||
all_entities_data = await asyncio.gather(
|
||
*[
|
||
_merge_nodes_then_upsert(k, v, knowledge_graph_inst, global_config)
|
||
for k, v in maybe_nodes.items()
|
||
]
|
||
)
|
||
|
||
all_relationships_data = await asyncio.gather(
|
||
*[
|
||
_merge_edges_then_upsert(
|
||
k[0], k[1], v, knowledge_graph_inst, global_config
|
||
)
|
||
for k, v in maybe_edges.items()
|
||
]
|
||
)
|
||
|
||
if not (all_entities_data or all_relationships_data):
|
||
log_message = "Didn't extract any entities and relationships."
|
||
logger.info(log_message)
|
||
if pipeline_status is not None:
|
||
async with pipeline_status_lock:
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
return
|
||
|
||
if not all_entities_data:
|
||
log_message = "Didn't extract any entities"
|
||
logger.info(log_message)
|
||
if pipeline_status is not None:
|
||
async with pipeline_status_lock:
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
if not all_relationships_data:
|
||
log_message = "Didn't extract any relationships"
|
||
logger.info(log_message)
|
||
if pipeline_status is not None:
|
||
async with pipeline_status_lock:
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
|
||
log_message = f"Extracted {len(all_entities_data)} entities and {len(all_relationships_data)} relationships (deduplicated)"
|
||
logger.info(log_message)
|
||
if pipeline_status is not None:
|
||
async with pipeline_status_lock:
|
||
pipeline_status["latest_message"] = log_message
|
||
pipeline_status["history_messages"].append(log_message)
|
||
verbose_debug(
|
||
f"New entities:{all_entities_data}, relationships:{all_relationships_data}"
|
||
)
|
||
verbose_debug(f"New relationships:{all_relationships_data}")
|
||
|
||
if entity_vdb is not None:
|
||
data_for_vdb = {
|
||
compute_mdhash_id(dp["entity_name"], prefix="ent-"): {
|
||
"entity_name": dp["entity_name"],
|
||
"entity_type": dp["entity_type"],
|
||
"content": f"{dp['entity_name']}\n{dp['description']}",
|
||
"source_id": dp["source_id"],
|
||
"file_path": dp.get("file_path", "unknown_source"),
|
||
}
|
||
for dp in all_entities_data
|
||
}
|
||
await entity_vdb.upsert(data_for_vdb)
|
||
|
||
if relationships_vdb is not None:
|
||
data_for_vdb = {
|
||
compute_mdhash_id(dp["src_id"] + dp["tgt_id"], prefix="rel-"): {
|
||
"src_id": dp["src_id"],
|
||
"tgt_id": dp["tgt_id"],
|
||
"keywords": dp["keywords"],
|
||
"content": f"{dp['src_id']}\t{dp['tgt_id']}\n{dp['keywords']}\n{dp['description']}",
|
||
"source_id": dp["source_id"],
|
||
"file_path": dp.get("file_path", "unknown_source"),
|
||
}
|
||
for dp in all_relationships_data
|
||
}
|
||
await relationships_vdb.upsert(data_for_vdb)
|
||
|
||
|
||
async def kg_query(
|
||
query: str,
|
||
knowledge_graph_inst: BaseGraphStorage,
|
||
entities_vdb: BaseVectorStorage,
|
||
relationships_vdb: BaseVectorStorage,
|
||
text_chunks_db: BaseKVStorage,
|
||
query_param: QueryParam,
|
||
global_config: dict[str, str],
|
||
hashing_kv: BaseKVStorage | None = None,
|
||
system_prompt: str | None = None,
|
||
) -> str | AsyncIterator[str]:
|
||
# Handle cache
|
||
use_model_func = (
|
||
query_param.model_func
|
||
if query_param.model_func
|
||
else global_config["llm_model_func"]
|
||
)
|
||
args_hash = compute_args_hash(query_param.mode, query, cache_type="query")
|
||
cached_response, quantized, min_val, max_val = await handle_cache(
|
||
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
||
)
|
||
if cached_response is not None:
|
||
return cached_response
|
||
|
||
# Extract keywords using extract_keywords_only function which already supports conversation history
|
||
hl_keywords, ll_keywords = await extract_keywords_only(
|
||
query, query_param, global_config, hashing_kv
|
||
)
|
||
|
||
logger.debug(f"High-level keywords: {hl_keywords}")
|
||
logger.debug(f"Low-level keywords: {ll_keywords}")
|
||
|
||
# Handle empty keywords
|
||
if hl_keywords == [] and ll_keywords == []:
|
||
logger.warning("low_level_keywords and high_level_keywords is empty")
|
||
return PROMPTS["fail_response"]
|
||
if ll_keywords == [] and query_param.mode in ["local", "hybrid"]:
|
||
logger.warning(
|
||
"low_level_keywords is empty, switching from %s mode to global mode",
|
||
query_param.mode,
|
||
)
|
||
query_param.mode = "global"
|
||
if hl_keywords == [] and query_param.mode in ["global", "hybrid"]:
|
||
logger.warning(
|
||
"high_level_keywords is empty, switching from %s mode to local mode",
|
||
query_param.mode,
|
||
)
|
||
query_param.mode = "local"
|
||
|
||
ll_keywords_str = ", ".join(ll_keywords) if ll_keywords else ""
|
||
hl_keywords_str = ", ".join(hl_keywords) if hl_keywords else ""
|
||
|
||
# Build context
|
||
context = await _build_query_context(
|
||
ll_keywords_str,
|
||
hl_keywords_str,
|
||
knowledge_graph_inst,
|
||
entities_vdb,
|
||
relationships_vdb,
|
||
text_chunks_db,
|
||
query_param,
|
||
)
|
||
|
||
if query_param.only_need_context:
|
||
return context
|
||
if context is None:
|
||
return PROMPTS["fail_response"]
|
||
|
||
# Process conversation history
|
||
history_context = ""
|
||
if query_param.conversation_history:
|
||
history_context = get_conversation_turns(
|
||
query_param.conversation_history, query_param.history_turns
|
||
)
|
||
|
||
sys_prompt_temp = system_prompt if system_prompt else PROMPTS["rag_response"]
|
||
sys_prompt = sys_prompt_temp.format(
|
||
context_data=context,
|
||
response_type=query_param.response_type,
|
||
history=history_context,
|
||
)
|
||
|
||
if query_param.only_need_prompt:
|
||
return sys_prompt
|
||
|
||
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
||
logger.debug(f"[kg_query]Prompt Tokens: {len_of_prompts}")
|
||
|
||
response = await use_model_func(
|
||
query,
|
||
system_prompt=sys_prompt,
|
||
stream=query_param.stream,
|
||
)
|
||
if isinstance(response, str) and len(response) > len(sys_prompt):
|
||
response = (
|
||
response.replace(sys_prompt, "")
|
||
.replace("user", "")
|
||
.replace("model", "")
|
||
.replace(query, "")
|
||
.replace("<system>", "")
|
||
.replace("</system>", "")
|
||
.strip()
|
||
)
|
||
|
||
# Save to cache
|
||
await save_to_cache(
|
||
hashing_kv,
|
||
CacheData(
|
||
args_hash=args_hash,
|
||
content=response,
|
||
prompt=query,
|
||
quantized=quantized,
|
||
min_val=min_val,
|
||
max_val=max_val,
|
||
mode=query_param.mode,
|
||
cache_type="query",
|
||
),
|
||
)
|
||
return response
|
||
|
||
|
||
async def extract_keywords_only(
|
||
text: str,
|
||
param: QueryParam,
|
||
global_config: dict[str, str],
|
||
hashing_kv: BaseKVStorage | None = None,
|
||
) -> tuple[list[str], list[str]]:
|
||
"""
|
||
Extract high-level and low-level keywords from the given 'text' using the LLM.
|
||
This method does NOT build the final RAG context or provide a final answer.
|
||
It ONLY extracts keywords (hl_keywords, ll_keywords).
|
||
"""
|
||
|
||
# 1. Handle cache if needed - add cache type for keywords
|
||
args_hash = compute_args_hash(param.mode, text, cache_type="keywords")
|
||
cached_response, quantized, min_val, max_val = await handle_cache(
|
||
hashing_kv, args_hash, text, param.mode, cache_type="keywords"
|
||
)
|
||
if cached_response is not None:
|
||
try:
|
||
keywords_data = json.loads(cached_response)
|
||
return keywords_data["high_level_keywords"], keywords_data[
|
||
"low_level_keywords"
|
||
]
|
||
except (json.JSONDecodeError, KeyError):
|
||
logger.warning(
|
||
"Invalid cache format for keywords, proceeding with extraction"
|
||
)
|
||
|
||
# 2. Build the examples
|
||
example_number = global_config["addon_params"].get("example_number", None)
|
||
if example_number and example_number < len(PROMPTS["keywords_extraction_examples"]):
|
||
examples = "\n".join(
|
||
PROMPTS["keywords_extraction_examples"][: int(example_number)]
|
||
)
|
||
else:
|
||
examples = "\n".join(PROMPTS["keywords_extraction_examples"])
|
||
language = global_config["addon_params"].get(
|
||
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
||
)
|
||
|
||
# 3. Process conversation history
|
||
history_context = ""
|
||
if param.conversation_history:
|
||
history_context = get_conversation_turns(
|
||
param.conversation_history, param.history_turns
|
||
)
|
||
|
||
# 4. Build the keyword-extraction prompt
|
||
kw_prompt = PROMPTS["keywords_extraction"].format(
|
||
query=text, examples=examples, language=language, history=history_context
|
||
)
|
||
|
||
len_of_prompts = len(encode_string_by_tiktoken(kw_prompt))
|
||
logger.debug(f"[kg_query]Prompt Tokens: {len_of_prompts}")
|
||
|
||
# 5. Call the LLM for keyword extraction
|
||
use_model_func = (
|
||
param.model_func if param.model_func else global_config["llm_model_func"]
|
||
)
|
||
result = await use_model_func(kw_prompt, keyword_extraction=True)
|
||
|
||
# 6. Parse out JSON from the LLM response
|
||
match = re.search(r"\{.*\}", result, re.DOTALL)
|
||
if not match:
|
||
logger.error("No JSON-like structure found in the LLM respond.")
|
||
return [], []
|
||
try:
|
||
keywords_data = json.loads(match.group(0))
|
||
except json.JSONDecodeError as e:
|
||
logger.error(f"JSON parsing error: {e}")
|
||
return [], []
|
||
|
||
hl_keywords = keywords_data.get("high_level_keywords", [])
|
||
ll_keywords = keywords_data.get("low_level_keywords", [])
|
||
|
||
# 7. Cache only the processed keywords with cache type
|
||
if hl_keywords or ll_keywords:
|
||
cache_data = {
|
||
"high_level_keywords": hl_keywords,
|
||
"low_level_keywords": ll_keywords,
|
||
}
|
||
await save_to_cache(
|
||
hashing_kv,
|
||
CacheData(
|
||
args_hash=args_hash,
|
||
content=json.dumps(cache_data),
|
||
prompt=text,
|
||
quantized=quantized,
|
||
min_val=min_val,
|
||
max_val=max_val,
|
||
mode=param.mode,
|
||
cache_type="keywords",
|
||
),
|
||
)
|
||
return hl_keywords, ll_keywords
|
||
|
||
|
||
async def mix_kg_vector_query(
|
||
query: str,
|
||
knowledge_graph_inst: BaseGraphStorage,
|
||
entities_vdb: BaseVectorStorage,
|
||
relationships_vdb: BaseVectorStorage,
|
||
chunks_vdb: BaseVectorStorage,
|
||
text_chunks_db: BaseKVStorage,
|
||
query_param: QueryParam,
|
||
global_config: dict[str, str],
|
||
hashing_kv: BaseKVStorage | None = None,
|
||
system_prompt: str | None = None,
|
||
) -> str | AsyncIterator[str]:
|
||
"""
|
||
Hybrid retrieval implementation combining knowledge graph and vector search.
|
||
|
||
This function performs a hybrid search by:
|
||
1. Extracting semantic information from knowledge graph
|
||
2. Retrieving relevant text chunks through vector similarity
|
||
3. Combining both results for comprehensive answer generation
|
||
"""
|
||
# 1. Cache handling
|
||
use_model_func = (
|
||
query_param.model_func
|
||
if query_param.model_func
|
||
else global_config["llm_model_func"]
|
||
)
|
||
args_hash = compute_args_hash("mix", query, cache_type="query")
|
||
cached_response, quantized, min_val, max_val = await handle_cache(
|
||
hashing_kv, args_hash, query, "mix", cache_type="query"
|
||
)
|
||
if cached_response is not None:
|
||
return cached_response
|
||
|
||
# Process conversation history
|
||
history_context = ""
|
||
if query_param.conversation_history:
|
||
history_context = get_conversation_turns(
|
||
query_param.conversation_history, query_param.history_turns
|
||
)
|
||
|
||
# 2. Execute knowledge graph and vector searches in parallel
|
||
async def get_kg_context():
|
||
try:
|
||
# Extract keywords using extract_keywords_only function which already supports conversation history
|
||
hl_keywords, ll_keywords = await extract_keywords_only(
|
||
query, query_param, global_config, hashing_kv
|
||
)
|
||
|
||
if not hl_keywords and not ll_keywords:
|
||
logger.warning("Both high-level and low-level keywords are empty")
|
||
return None
|
||
|
||
# Convert keyword lists to strings
|
||
ll_keywords_str = ", ".join(ll_keywords) if ll_keywords else ""
|
||
hl_keywords_str = ", ".join(hl_keywords) if hl_keywords else ""
|
||
|
||
# Set query mode based on available keywords
|
||
if not ll_keywords_str and not hl_keywords_str:
|
||
return None
|
||
elif not ll_keywords_str:
|
||
query_param.mode = "global"
|
||
elif not hl_keywords_str:
|
||
query_param.mode = "local"
|
||
else:
|
||
query_param.mode = "hybrid"
|
||
|
||
# Build knowledge graph context
|
||
context = await _build_query_context(
|
||
ll_keywords_str,
|
||
hl_keywords_str,
|
||
knowledge_graph_inst,
|
||
entities_vdb,
|
||
relationships_vdb,
|
||
text_chunks_db,
|
||
query_param,
|
||
)
|
||
|
||
return context
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error in get_kg_context: {str(e)}")
|
||
return None
|
||
|
||
async def get_vector_context():
|
||
# Consider conversation history in vector search
|
||
augmented_query = query
|
||
if history_context:
|
||
augmented_query = f"{history_context}\n{query}"
|
||
|
||
try:
|
||
# Reduce top_k for vector search in hybrid mode since we have structured information from KG
|
||
mix_topk = min(10, query_param.top_k)
|
||
# TODO: add ids to the query
|
||
results = await chunks_vdb.query(
|
||
augmented_query, top_k=mix_topk, ids=query_param.ids
|
||
)
|
||
if not results:
|
||
return None
|
||
|
||
chunks_ids = [r["id"] for r in results]
|
||
chunks = await text_chunks_db.get_by_ids(chunks_ids)
|
||
|
||
valid_chunks = []
|
||
for chunk, result in zip(chunks, results):
|
||
if chunk is not None and "content" in chunk:
|
||
# Merge chunk content and time metadata
|
||
chunk_with_time = {
|
||
"content": chunk["content"],
|
||
"created_at": result.get("created_at", None),
|
||
}
|
||
valid_chunks.append(chunk_with_time)
|
||
|
||
if not valid_chunks:
|
||
return None
|
||
|
||
maybe_trun_chunks = truncate_list_by_token_size(
|
||
valid_chunks,
|
||
key=lambda x: x["content"],
|
||
max_token_size=query_param.max_token_for_text_unit,
|
||
)
|
||
|
||
if not maybe_trun_chunks:
|
||
return None
|
||
|
||
# Include time information in content
|
||
formatted_chunks = []
|
||
for c in maybe_trun_chunks:
|
||
chunk_text = "File path: " + c["file_path"] + "\n" + c["content"]
|
||
if c["created_at"]:
|
||
chunk_text = f"[Created at: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(c['created_at']))}]\n{chunk_text}"
|
||
formatted_chunks.append(chunk_text)
|
||
|
||
logger.debug(
|
||
f"Truncate chunks from {len(chunks)} to {len(formatted_chunks)} (max tokens:{query_param.max_token_for_text_unit})"
|
||
)
|
||
return "\n--New Chunk--\n".join(formatted_chunks)
|
||
except Exception as e:
|
||
logger.error(f"Error in get_vector_context: {e}")
|
||
return None
|
||
|
||
# 3. Execute both retrievals in parallel
|
||
kg_context, vector_context = await asyncio.gather(
|
||
get_kg_context(), get_vector_context()
|
||
)
|
||
|
||
# 4. Merge contexts
|
||
if kg_context is None and vector_context is None:
|
||
return PROMPTS["fail_response"]
|
||
|
||
if query_param.only_need_context:
|
||
return {"kg_context": kg_context, "vector_context": vector_context}
|
||
|
||
# 5. Construct hybrid prompt
|
||
sys_prompt = (
|
||
system_prompt
|
||
if system_prompt
|
||
else PROMPTS["mix_rag_response"].format(
|
||
kg_context=kg_context
|
||
if kg_context
|
||
else "No relevant knowledge graph information found",
|
||
vector_context=vector_context
|
||
if vector_context
|
||
else "No relevant text information found",
|
||
response_type=query_param.response_type,
|
||
history=history_context,
|
||
)
|
||
)
|
||
|
||
if query_param.only_need_prompt:
|
||
return sys_prompt
|
||
|
||
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
||
logger.debug(f"[mix_kg_vector_query]Prompt Tokens: {len_of_prompts}")
|
||
|
||
# 6. Generate response
|
||
response = await use_model_func(
|
||
query,
|
||
system_prompt=sys_prompt,
|
||
stream=query_param.stream,
|
||
)
|
||
|
||
# Clean up response content
|
||
if isinstance(response, str) and len(response) > len(sys_prompt):
|
||
response = (
|
||
response.replace(sys_prompt, "")
|
||
.replace("user", "")
|
||
.replace("model", "")
|
||
.replace(query, "")
|
||
.replace("<system>", "")
|
||
.replace("</system>", "")
|
||
.strip()
|
||
)
|
||
|
||
# 7. Save cache - Only cache after collecting complete response
|
||
await save_to_cache(
|
||
hashing_kv,
|
||
CacheData(
|
||
args_hash=args_hash,
|
||
content=response,
|
||
prompt=query,
|
||
quantized=quantized,
|
||
min_val=min_val,
|
||
max_val=max_val,
|
||
mode="mix",
|
||
cache_type="query",
|
||
),
|
||
)
|
||
|
||
return response
|
||
|
||
|
||
async def _build_query_context(
|
||
ll_keywords: str,
|
||
hl_keywords: str,
|
||
knowledge_graph_inst: BaseGraphStorage,
|
||
entities_vdb: BaseVectorStorage,
|
||
relationships_vdb: BaseVectorStorage,
|
||
text_chunks_db: BaseKVStorage,
|
||
query_param: QueryParam,
|
||
):
|
||
logger.info(f"Process {os.getpid()} buidling query context...")
|
||
if query_param.mode == "local":
|
||
entities_context, relations_context, text_units_context = await _get_node_data(
|
||
ll_keywords,
|
||
knowledge_graph_inst,
|
||
entities_vdb,
|
||
text_chunks_db,
|
||
query_param,
|
||
)
|
||
elif query_param.mode == "global":
|
||
entities_context, relations_context, text_units_context = await _get_edge_data(
|
||
hl_keywords,
|
||
knowledge_graph_inst,
|
||
relationships_vdb,
|
||
text_chunks_db,
|
||
query_param,
|
||
)
|
||
else: # hybrid mode
|
||
ll_data, hl_data = await asyncio.gather(
|
||
_get_node_data(
|
||
ll_keywords,
|
||
knowledge_graph_inst,
|
||
entities_vdb,
|
||
text_chunks_db,
|
||
query_param,
|
||
),
|
||
_get_edge_data(
|
||
hl_keywords,
|
||
knowledge_graph_inst,
|
||
relationships_vdb,
|
||
text_chunks_db,
|
||
query_param,
|
||
),
|
||
)
|
||
|
||
(
|
||
ll_entities_context,
|
||
ll_relations_context,
|
||
ll_text_units_context,
|
||
) = ll_data
|
||
|
||
(
|
||
hl_entities_context,
|
||
hl_relations_context,
|
||
hl_text_units_context,
|
||
) = hl_data
|
||
|
||
entities_context, relations_context, text_units_context = combine_contexts(
|
||
[hl_entities_context, ll_entities_context],
|
||
[hl_relations_context, ll_relations_context],
|
||
[hl_text_units_context, ll_text_units_context],
|
||
)
|
||
# not necessary to use LLM to generate a response
|
||
if not entities_context.strip() and not relations_context.strip():
|
||
return None
|
||
|
||
result = f"""
|
||
-----Entities-----
|
||
```csv
|
||
{entities_context}
|
||
```
|
||
-----Relationships-----
|
||
```csv
|
||
{relations_context}
|
||
```
|
||
-----Sources-----
|
||
```csv
|
||
{text_units_context}
|
||
```
|
||
""".strip()
|
||
return result
|
||
|
||
|
||
async def _get_node_data(
|
||
query: str,
|
||
knowledge_graph_inst: BaseGraphStorage,
|
||
entities_vdb: BaseVectorStorage,
|
||
text_chunks_db: BaseKVStorage,
|
||
query_param: QueryParam,
|
||
):
|
||
# get similar entities
|
||
logger.info(
|
||
f"Query nodes: {query}, top_k: {query_param.top_k}, cosine: {entities_vdb.cosine_better_than_threshold}"
|
||
)
|
||
|
||
results = await entities_vdb.query(
|
||
query, top_k=query_param.top_k, ids=query_param.ids
|
||
)
|
||
|
||
if not len(results):
|
||
return "", "", ""
|
||
# get entity information
|
||
node_datas, node_degrees = await asyncio.gather(
|
||
asyncio.gather(
|
||
*[knowledge_graph_inst.get_node(r["entity_name"]) for r in results]
|
||
),
|
||
asyncio.gather(
|
||
*[knowledge_graph_inst.node_degree(r["entity_name"]) for r in results]
|
||
),
|
||
)
|
||
|
||
if not all([n is not None for n in node_datas]):
|
||
logger.warning("Some nodes are missing, maybe the storage is damaged")
|
||
|
||
node_datas = [
|
||
{**n, "entity_name": k["entity_name"], "rank": d}
|
||
for k, n, d in zip(results, node_datas, node_degrees)
|
||
if n is not None
|
||
] # what is this text_chunks_db doing. dont remember it in airvx. check the diagram.
|
||
# get entitytext chunk
|
||
use_text_units, use_relations = await asyncio.gather(
|
||
_find_most_related_text_unit_from_entities(
|
||
node_datas, query_param, text_chunks_db, knowledge_graph_inst
|
||
),
|
||
_find_most_related_edges_from_entities(
|
||
node_datas, query_param, knowledge_graph_inst
|
||
),
|
||
)
|
||
|
||
len_node_datas = len(node_datas)
|
||
node_datas = truncate_list_by_token_size(
|
||
node_datas,
|
||
key=lambda x: x["description"] if x["description"] is not None else "",
|
||
max_token_size=query_param.max_token_for_local_context,
|
||
)
|
||
logger.debug(
|
||
f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})"
|
||
)
|
||
|
||
logger.info(
|
||
f"Local query uses {len(node_datas)} entites, {len(use_relations)} relations, {len(use_text_units)} chunks"
|
||
)
|
||
|
||
# build prompt
|
||
entites_section_list = [
|
||
[
|
||
"id",
|
||
"entity",
|
||
"type",
|
||
"description",
|
||
"rank",
|
||
"created_at",
|
||
"file_path",
|
||
]
|
||
]
|
||
for i, n in enumerate(node_datas):
|
||
created_at = n.get("created_at", "UNKNOWN")
|
||
if isinstance(created_at, (int, float)):
|
||
created_at = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(created_at))
|
||
|
||
# Get file path from node data
|
||
file_path = n.get("file_path", "unknown_source")
|
||
|
||
entites_section_list.append(
|
||
[
|
||
i,
|
||
n["entity_name"],
|
||
n.get("entity_type", "UNKNOWN"),
|
||
n.get("description", "UNKNOWN"),
|
||
n["rank"],
|
||
created_at,
|
||
file_path,
|
||
]
|
||
)
|
||
entities_context = list_of_list_to_csv(entites_section_list)
|
||
|
||
relations_section_list = [
|
||
[
|
||
"id",
|
||
"source",
|
||
"target",
|
||
"description",
|
||
"keywords",
|
||
"weight",
|
||
"rank",
|
||
"created_at",
|
||
"file_path",
|
||
]
|
||
]
|
||
for i, e in enumerate(use_relations):
|
||
created_at = e.get("created_at", "UNKNOWN")
|
||
# Convert timestamp to readable format
|
||
if isinstance(created_at, (int, float)):
|
||
created_at = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(created_at))
|
||
|
||
# Get file path from edge data
|
||
file_path = e.get("file_path", "unknown_source")
|
||
|
||
relations_section_list.append(
|
||
[
|
||
i,
|
||
e["src_tgt"][0],
|
||
e["src_tgt"][1],
|
||
e["description"],
|
||
e["keywords"],
|
||
e["weight"],
|
||
e["rank"],
|
||
created_at,
|
||
file_path,
|
||
]
|
||
)
|
||
relations_context = list_of_list_to_csv(relations_section_list)
|
||
|
||
text_units_section_list = [["id", "content", "file_path"]]
|
||
for i, t in enumerate(use_text_units):
|
||
text_units_section_list.append([i, t["content"], t["file_path"]])
|
||
text_units_context = list_of_list_to_csv(text_units_section_list)
|
||
return entities_context, relations_context, text_units_context
|
||
|
||
|
||
async def _find_most_related_text_unit_from_entities(
|
||
node_datas: list[dict],
|
||
query_param: QueryParam,
|
||
text_chunks_db: BaseKVStorage,
|
||
knowledge_graph_inst: BaseGraphStorage,
|
||
):
|
||
text_units = [
|
||
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
|
||
for dp in node_datas
|
||
]
|
||
edges = await asyncio.gather(
|
||
*[knowledge_graph_inst.get_node_edges(dp["entity_name"]) for dp in node_datas]
|
||
)
|
||
all_one_hop_nodes = set()
|
||
for this_edges in edges:
|
||
if not this_edges:
|
||
continue
|
||
all_one_hop_nodes.update([e[1] for e in this_edges])
|
||
|
||
all_one_hop_nodes = list(all_one_hop_nodes)
|
||
all_one_hop_nodes_data = await asyncio.gather(
|
||
*[knowledge_graph_inst.get_node(e) for e in all_one_hop_nodes]
|
||
)
|
||
|
||
# Add null check for node data
|
||
all_one_hop_text_units_lookup = {
|
||
k: set(split_string_by_multi_markers(v["source_id"], [GRAPH_FIELD_SEP]))
|
||
for k, v in zip(all_one_hop_nodes, all_one_hop_nodes_data)
|
||
if v is not None and "source_id" in v # Add source_id check
|
||
}
|
||
|
||
all_text_units_lookup = {}
|
||
tasks = []
|
||
|
||
for index, (this_text_units, this_edges) in enumerate(zip(text_units, edges)):
|
||
for c_id in this_text_units:
|
||
if c_id not in all_text_units_lookup:
|
||
all_text_units_lookup[c_id] = index
|
||
tasks.append((c_id, index, this_edges))
|
||
|
||
results = await asyncio.gather(
|
||
*[text_chunks_db.get_by_id(c_id) for c_id, _, _ in tasks]
|
||
)
|
||
|
||
for (c_id, index, this_edges), data in zip(tasks, results):
|
||
all_text_units_lookup[c_id] = {
|
||
"data": data,
|
||
"order": index,
|
||
"relation_counts": 0,
|
||
}
|
||
|
||
if this_edges:
|
||
for e in this_edges:
|
||
if (
|
||
e[1] in all_one_hop_text_units_lookup
|
||
and c_id in all_one_hop_text_units_lookup[e[1]]
|
||
):
|
||
all_text_units_lookup[c_id]["relation_counts"] += 1
|
||
|
||
# Filter out None values and ensure data has content
|
||
all_text_units = [
|
||
{"id": k, **v}
|
||
for k, v in all_text_units_lookup.items()
|
||
if v is not None and v.get("data") is not None and "content" in v["data"]
|
||
]
|
||
|
||
if not all_text_units:
|
||
logger.warning("No valid text units found")
|
||
return []
|
||
|
||
all_text_units = sorted(
|
||
all_text_units, key=lambda x: (x["order"], -x["relation_counts"])
|
||
)
|
||
|
||
all_text_units = truncate_list_by_token_size(
|
||
all_text_units,
|
||
key=lambda x: x["data"]["content"],
|
||
max_token_size=query_param.max_token_for_text_unit,
|
||
)
|
||
|
||
logger.debug(
|
||
f"Truncate chunks from {len(all_text_units_lookup)} to {len(all_text_units)} (max tokens:{query_param.max_token_for_text_unit})"
|
||
)
|
||
|
||
all_text_units = [t["data"] for t in all_text_units]
|
||
return all_text_units
|
||
|
||
|
||
async def _find_most_related_edges_from_entities(
|
||
node_datas: list[dict],
|
||
query_param: QueryParam,
|
||
knowledge_graph_inst: BaseGraphStorage,
|
||
):
|
||
all_related_edges = await asyncio.gather(
|
||
*[knowledge_graph_inst.get_node_edges(dp["entity_name"]) for dp in node_datas]
|
||
)
|
||
all_edges = []
|
||
seen = set()
|
||
|
||
for this_edges in all_related_edges:
|
||
for e in this_edges:
|
||
sorted_edge = tuple(sorted(e))
|
||
if sorted_edge not in seen:
|
||
seen.add(sorted_edge)
|
||
all_edges.append(sorted_edge)
|
||
|
||
all_edges_pack, all_edges_degree = await asyncio.gather(
|
||
asyncio.gather(*[knowledge_graph_inst.get_edge(e[0], e[1]) for e in all_edges]),
|
||
asyncio.gather(
|
||
*[knowledge_graph_inst.edge_degree(e[0], e[1]) for e in all_edges]
|
||
),
|
||
)
|
||
all_edges_data = [
|
||
{"src_tgt": k, "rank": d, **v}
|
||
for k, v, d in zip(all_edges, all_edges_pack, all_edges_degree)
|
||
if v is not None
|
||
]
|
||
all_edges_data = sorted(
|
||
all_edges_data, key=lambda x: (x["rank"], x["weight"]), reverse=True
|
||
)
|
||
all_edges_data = truncate_list_by_token_size(
|
||
all_edges_data,
|
||
key=lambda x: x["description"] if x["description"] is not None else "",
|
||
max_token_size=query_param.max_token_for_global_context,
|
||
)
|
||
|
||
logger.debug(
|
||
f"Truncate relations from {len(all_edges)} to {len(all_edges_data)} (max tokens:{query_param.max_token_for_global_context})"
|
||
)
|
||
|
||
return all_edges_data
|
||
|
||
|
||
async def _get_edge_data(
|
||
keywords,
|
||
knowledge_graph_inst: BaseGraphStorage,
|
||
relationships_vdb: BaseVectorStorage,
|
||
text_chunks_db: BaseKVStorage,
|
||
query_param: QueryParam,
|
||
):
|
||
logger.info(
|
||
f"Query edges: {keywords}, top_k: {query_param.top_k}, cosine: {relationships_vdb.cosine_better_than_threshold}"
|
||
)
|
||
|
||
results = await relationships_vdb.query(
|
||
keywords, top_k=query_param.top_k, ids=query_param.ids
|
||
)
|
||
|
||
if not len(results):
|
||
return "", "", ""
|
||
|
||
edge_datas, edge_degree = await asyncio.gather(
|
||
asyncio.gather(
|
||
*[knowledge_graph_inst.get_edge(r["src_id"], r["tgt_id"]) for r in results]
|
||
),
|
||
asyncio.gather(
|
||
*[
|
||
knowledge_graph_inst.edge_degree(r["src_id"], r["tgt_id"])
|
||
for r in results
|
||
]
|
||
),
|
||
)
|
||
|
||
edge_datas = [
|
||
{
|
||
"src_id": k["src_id"],
|
||
"tgt_id": k["tgt_id"],
|
||
"rank": d,
|
||
"created_at": k.get("__created_at__", None),
|
||
**v,
|
||
}
|
||
for k, v, d in zip(results, edge_datas, edge_degree)
|
||
if v is not None
|
||
]
|
||
edge_datas = sorted(
|
||
edge_datas, key=lambda x: (x["rank"], x["weight"]), reverse=True
|
||
)
|
||
edge_datas = truncate_list_by_token_size(
|
||
edge_datas,
|
||
key=lambda x: x["description"] if x["description"] is not None else "",
|
||
max_token_size=query_param.max_token_for_global_context,
|
||
)
|
||
use_entities, use_text_units = await asyncio.gather(
|
||
_find_most_related_entities_from_relationships(
|
||
edge_datas, query_param, knowledge_graph_inst
|
||
),
|
||
_find_related_text_unit_from_relationships(
|
||
edge_datas, query_param, text_chunks_db, knowledge_graph_inst
|
||
),
|
||
)
|
||
logger.info(
|
||
f"Global query uses {len(use_entities)} entites, {len(edge_datas)} relations, {len(use_text_units)} chunks"
|
||
)
|
||
|
||
relations_section_list = [
|
||
[
|
||
"id",
|
||
"source",
|
||
"target",
|
||
"description",
|
||
"keywords",
|
||
"weight",
|
||
"rank",
|
||
"created_at",
|
||
"file_path",
|
||
]
|
||
]
|
||
for i, e in enumerate(edge_datas):
|
||
created_at = e.get("created_at", "Unknown")
|
||
# Convert timestamp to readable format
|
||
if isinstance(created_at, (int, float)):
|
||
created_at = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(created_at))
|
||
|
||
# Get file path from edge data
|
||
file_path = e.get("file_path", "unknown_source")
|
||
|
||
relations_section_list.append(
|
||
[
|
||
i,
|
||
e["src_id"],
|
||
e["tgt_id"],
|
||
e["description"],
|
||
e["keywords"],
|
||
e["weight"],
|
||
e["rank"],
|
||
created_at,
|
||
file_path,
|
||
]
|
||
)
|
||
relations_context = list_of_list_to_csv(relations_section_list)
|
||
|
||
entites_section_list = [
|
||
["id", "entity", "type", "description", "rank", "created_at", "file_path"]
|
||
]
|
||
for i, n in enumerate(use_entities):
|
||
created_at = n.get("created_at", "Unknown")
|
||
# Convert timestamp to readable format
|
||
if isinstance(created_at, (int, float)):
|
||
created_at = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(created_at))
|
||
|
||
# Get file path from node data
|
||
file_path = n.get("file_path", "unknown_source")
|
||
|
||
entites_section_list.append(
|
||
[
|
||
i,
|
||
n["entity_name"],
|
||
n.get("entity_type", "UNKNOWN"),
|
||
n.get("description", "UNKNOWN"),
|
||
n["rank"],
|
||
created_at,
|
||
file_path,
|
||
]
|
||
)
|
||
entities_context = list_of_list_to_csv(entites_section_list)
|
||
|
||
text_units_section_list = [["id", "content", "file_path"]]
|
||
for i, t in enumerate(use_text_units):
|
||
text_units_section_list.append([i, t["content"], t["file_path"]])
|
||
text_units_context = list_of_list_to_csv(text_units_section_list)
|
||
return entities_context, relations_context, text_units_context
|
||
|
||
|
||
async def _find_most_related_entities_from_relationships(
|
||
edge_datas: list[dict],
|
||
query_param: QueryParam,
|
||
knowledge_graph_inst: BaseGraphStorage,
|
||
):
|
||
entity_names = []
|
||
seen = set()
|
||
|
||
for e in edge_datas:
|
||
if e["src_id"] not in seen:
|
||
entity_names.append(e["src_id"])
|
||
seen.add(e["src_id"])
|
||
if e["tgt_id"] not in seen:
|
||
entity_names.append(e["tgt_id"])
|
||
seen.add(e["tgt_id"])
|
||
|
||
node_datas, node_degrees = await asyncio.gather(
|
||
asyncio.gather(
|
||
*[
|
||
knowledge_graph_inst.get_node(entity_name)
|
||
for entity_name in entity_names
|
||
]
|
||
),
|
||
asyncio.gather(
|
||
*[
|
||
knowledge_graph_inst.node_degree(entity_name)
|
||
for entity_name in entity_names
|
||
]
|
||
),
|
||
)
|
||
node_datas = [
|
||
{**n, "entity_name": k, "rank": d}
|
||
for k, n, d in zip(entity_names, node_datas, node_degrees)
|
||
]
|
||
|
||
len_node_datas = len(node_datas)
|
||
node_datas = truncate_list_by_token_size(
|
||
node_datas,
|
||
key=lambda x: x["description"] if x["description"] is not None else "",
|
||
max_token_size=query_param.max_token_for_local_context,
|
||
)
|
||
logger.debug(
|
||
f"Truncate entities from {len_node_datas} to {len(node_datas)} (max tokens:{query_param.max_token_for_local_context})"
|
||
)
|
||
|
||
return node_datas
|
||
|
||
|
||
async def _find_related_text_unit_from_relationships(
|
||
edge_datas: list[dict],
|
||
query_param: QueryParam,
|
||
text_chunks_db: BaseKVStorage,
|
||
knowledge_graph_inst: BaseGraphStorage,
|
||
):
|
||
text_units = [
|
||
split_string_by_multi_markers(dp["source_id"], [GRAPH_FIELD_SEP])
|
||
for dp in edge_datas
|
||
]
|
||
all_text_units_lookup = {}
|
||
|
||
async def fetch_chunk_data(c_id, index):
|
||
if c_id not in all_text_units_lookup:
|
||
chunk_data = await text_chunks_db.get_by_id(c_id)
|
||
# Only store valid data
|
||
if chunk_data is not None and "content" in chunk_data:
|
||
all_text_units_lookup[c_id] = {
|
||
"data": chunk_data,
|
||
"order": index,
|
||
}
|
||
|
||
tasks = []
|
||
for index, unit_list in enumerate(text_units):
|
||
for c_id in unit_list:
|
||
tasks.append(fetch_chunk_data(c_id, index))
|
||
|
||
await asyncio.gather(*tasks)
|
||
|
||
if not all_text_units_lookup:
|
||
logger.warning("No valid text chunks found")
|
||
return []
|
||
|
||
all_text_units = [{"id": k, **v} for k, v in all_text_units_lookup.items()]
|
||
all_text_units = sorted(all_text_units, key=lambda x: x["order"])
|
||
|
||
# Ensure all text chunks have content
|
||
valid_text_units = [
|
||
t for t in all_text_units if t["data"] is not None and "content" in t["data"]
|
||
]
|
||
|
||
if not valid_text_units:
|
||
logger.warning("No valid text chunks after filtering")
|
||
return []
|
||
|
||
truncated_text_units = truncate_list_by_token_size(
|
||
valid_text_units,
|
||
key=lambda x: x["data"]["content"],
|
||
max_token_size=query_param.max_token_for_text_unit,
|
||
)
|
||
|
||
logger.debug(
|
||
f"Truncate chunks from {len(valid_text_units)} to {len(truncated_text_units)} (max tokens:{query_param.max_token_for_text_unit})"
|
||
)
|
||
|
||
all_text_units: list[TextChunkSchema] = [t["data"] for t in truncated_text_units]
|
||
|
||
return all_text_units
|
||
|
||
|
||
def combine_contexts(entities, relationships, sources):
|
||
# Function to extract entities, relationships, and sources from context strings
|
||
hl_entities, ll_entities = entities[0], entities[1]
|
||
hl_relationships, ll_relationships = relationships[0], relationships[1]
|
||
hl_sources, ll_sources = sources[0], sources[1]
|
||
# Combine and deduplicate the entities
|
||
combined_entities = process_combine_contexts(hl_entities, ll_entities)
|
||
|
||
# Combine and deduplicate the relationships
|
||
combined_relationships = process_combine_contexts(
|
||
hl_relationships, ll_relationships
|
||
)
|
||
|
||
# Combine and deduplicate the sources
|
||
combined_sources = process_combine_contexts(hl_sources, ll_sources)
|
||
|
||
return combined_entities, combined_relationships, combined_sources
|
||
|
||
|
||
async def naive_query(
|
||
query: str,
|
||
chunks_vdb: BaseVectorStorage,
|
||
text_chunks_db: BaseKVStorage,
|
||
query_param: QueryParam,
|
||
global_config: dict[str, str],
|
||
hashing_kv: BaseKVStorage | None = None,
|
||
system_prompt: str | None = None,
|
||
) -> str | AsyncIterator[str]:
|
||
# Handle cache
|
||
use_model_func = (
|
||
query_param.model_func
|
||
if query_param.model_func
|
||
else global_config["llm_model_func"]
|
||
)
|
||
args_hash = compute_args_hash(query_param.mode, query, cache_type="query")
|
||
cached_response, quantized, min_val, max_val = await handle_cache(
|
||
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
||
)
|
||
if cached_response is not None:
|
||
return cached_response
|
||
|
||
results = await chunks_vdb.query(
|
||
query, top_k=query_param.top_k, ids=query_param.ids
|
||
)
|
||
if not len(results):
|
||
return PROMPTS["fail_response"]
|
||
|
||
chunks_ids = [r["id"] for r in results]
|
||
chunks = await text_chunks_db.get_by_ids(chunks_ids)
|
||
|
||
# Filter out invalid chunks
|
||
valid_chunks = [
|
||
chunk for chunk in chunks if chunk is not None and "content" in chunk
|
||
]
|
||
|
||
if not valid_chunks:
|
||
logger.warning("No valid chunks found after filtering")
|
||
return PROMPTS["fail_response"]
|
||
|
||
maybe_trun_chunks = truncate_list_by_token_size(
|
||
valid_chunks,
|
||
key=lambda x: x["content"],
|
||
max_token_size=query_param.max_token_for_text_unit,
|
||
)
|
||
|
||
if not maybe_trun_chunks:
|
||
logger.warning("No chunks left after truncation")
|
||
return PROMPTS["fail_response"]
|
||
|
||
logger.debug(
|
||
f"Truncate chunks from {len(chunks)} to {len(maybe_trun_chunks)} (max tokens:{query_param.max_token_for_text_unit})"
|
||
)
|
||
|
||
section = "\n--New Chunk--\n".join(
|
||
[
|
||
"File path: " + c["file_path"] + "\n" + c["content"]
|
||
for c in maybe_trun_chunks
|
||
]
|
||
)
|
||
|
||
if query_param.only_need_context:
|
||
return section
|
||
|
||
# Process conversation history
|
||
history_context = ""
|
||
if query_param.conversation_history:
|
||
history_context = get_conversation_turns(
|
||
query_param.conversation_history, query_param.history_turns
|
||
)
|
||
|
||
sys_prompt_temp = system_prompt if system_prompt else PROMPTS["naive_rag_response"]
|
||
sys_prompt = sys_prompt_temp.format(
|
||
content_data=section,
|
||
response_type=query_param.response_type,
|
||
history=history_context,
|
||
)
|
||
|
||
if query_param.only_need_prompt:
|
||
return sys_prompt
|
||
|
||
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
||
logger.debug(f"[naive_query]Prompt Tokens: {len_of_prompts}")
|
||
|
||
response = await use_model_func(
|
||
query,
|
||
system_prompt=sys_prompt,
|
||
)
|
||
|
||
if len(response) > len(sys_prompt):
|
||
response = (
|
||
response[len(sys_prompt) :]
|
||
.replace(sys_prompt, "")
|
||
.replace("user", "")
|
||
.replace("model", "")
|
||
.replace(query, "")
|
||
.replace("<system>", "")
|
||
.replace("</system>", "")
|
||
.strip()
|
||
)
|
||
|
||
# Save to cache
|
||
await save_to_cache(
|
||
hashing_kv,
|
||
CacheData(
|
||
args_hash=args_hash,
|
||
content=response,
|
||
prompt=query,
|
||
quantized=quantized,
|
||
min_val=min_val,
|
||
max_val=max_val,
|
||
mode=query_param.mode,
|
||
cache_type="query",
|
||
),
|
||
)
|
||
|
||
return response
|
||
|
||
|
||
async def kg_query_with_keywords(
|
||
query: str,
|
||
knowledge_graph_inst: BaseGraphStorage,
|
||
entities_vdb: BaseVectorStorage,
|
||
relationships_vdb: BaseVectorStorage,
|
||
text_chunks_db: BaseKVStorage,
|
||
query_param: QueryParam,
|
||
global_config: dict[str, str],
|
||
hashing_kv: BaseKVStorage | None = None,
|
||
) -> str | AsyncIterator[str]:
|
||
"""
|
||
Refactored kg_query that does NOT extract keywords by itself.
|
||
It expects hl_keywords and ll_keywords to be set in query_param, or defaults to empty.
|
||
Then it uses those to build context and produce a final LLM response.
|
||
"""
|
||
|
||
# ---------------------------
|
||
# 1) Handle potential cache for query results
|
||
# ---------------------------
|
||
use_model_func = (
|
||
query_param.model_func
|
||
if query_param.model_func
|
||
else global_config["llm_model_func"]
|
||
)
|
||
args_hash = compute_args_hash(query_param.mode, query, cache_type="query")
|
||
cached_response, quantized, min_val, max_val = await handle_cache(
|
||
hashing_kv, args_hash, query, query_param.mode, cache_type="query"
|
||
)
|
||
if cached_response is not None:
|
||
return cached_response
|
||
|
||
# ---------------------------
|
||
# 2) RETRIEVE KEYWORDS FROM query_param
|
||
# ---------------------------
|
||
|
||
# If these fields don't exist, default to empty lists/strings.
|
||
hl_keywords = getattr(query_param, "hl_keywords", []) or []
|
||
ll_keywords = getattr(query_param, "ll_keywords", []) or []
|
||
|
||
# If neither has any keywords, you could handle that logic here.
|
||
if not hl_keywords and not ll_keywords:
|
||
logger.warning(
|
||
"No keywords found in query_param. Could default to global mode or fail."
|
||
)
|
||
return PROMPTS["fail_response"]
|
||
if not ll_keywords and query_param.mode in ["local", "hybrid"]:
|
||
logger.warning("low_level_keywords is empty, switching to global mode.")
|
||
query_param.mode = "global"
|
||
if not hl_keywords and query_param.mode in ["global", "hybrid"]:
|
||
logger.warning("high_level_keywords is empty, switching to local mode.")
|
||
query_param.mode = "local"
|
||
|
||
# Flatten low-level and high-level keywords if needed
|
||
ll_keywords_flat = (
|
||
[item for sublist in ll_keywords for item in sublist]
|
||
if any(isinstance(i, list) for i in ll_keywords)
|
||
else ll_keywords
|
||
)
|
||
hl_keywords_flat = (
|
||
[item for sublist in hl_keywords for item in sublist]
|
||
if any(isinstance(i, list) for i in hl_keywords)
|
||
else hl_keywords
|
||
)
|
||
|
||
# Join the flattened lists
|
||
ll_keywords_str = ", ".join(ll_keywords_flat) if ll_keywords_flat else ""
|
||
hl_keywords_str = ", ".join(hl_keywords_flat) if hl_keywords_flat else ""
|
||
|
||
# ---------------------------
|
||
# 3) BUILD CONTEXT
|
||
# ---------------------------
|
||
context = await _build_query_context(
|
||
ll_keywords_str,
|
||
hl_keywords_str,
|
||
knowledge_graph_inst,
|
||
entities_vdb,
|
||
relationships_vdb,
|
||
text_chunks_db,
|
||
query_param,
|
||
)
|
||
if not context:
|
||
return PROMPTS["fail_response"]
|
||
|
||
# If only context is needed, return it
|
||
if query_param.only_need_context:
|
||
return context
|
||
|
||
# ---------------------------
|
||
# 4) BUILD THE SYSTEM PROMPT + CALL LLM
|
||
# ---------------------------
|
||
|
||
# Process conversation history
|
||
history_context = ""
|
||
if query_param.conversation_history:
|
||
history_context = get_conversation_turns(
|
||
query_param.conversation_history, query_param.history_turns
|
||
)
|
||
|
||
sys_prompt_temp = PROMPTS["rag_response"]
|
||
sys_prompt = sys_prompt_temp.format(
|
||
context_data=context,
|
||
response_type=query_param.response_type,
|
||
history=history_context,
|
||
)
|
||
|
||
if query_param.only_need_prompt:
|
||
return sys_prompt
|
||
|
||
len_of_prompts = len(encode_string_by_tiktoken(query + sys_prompt))
|
||
logger.debug(f"[kg_query_with_keywords]Prompt Tokens: {len_of_prompts}")
|
||
|
||
# 6. Generate response
|
||
response = await use_model_func(
|
||
query,
|
||
system_prompt=sys_prompt,
|
||
stream=query_param.stream,
|
||
)
|
||
|
||
# Clean up response content
|
||
if isinstance(response, str) and len(response) > len(sys_prompt):
|
||
response = (
|
||
response.replace(sys_prompt, "")
|
||
.replace("user", "")
|
||
.replace("model", "")
|
||
.replace(query, "")
|
||
.replace("<system>", "")
|
||
.replace("</system>", "")
|
||
.strip()
|
||
)
|
||
|
||
# 7. Save cache - 只有在收集完整响应后才缓存
|
||
await save_to_cache(
|
||
hashing_kv,
|
||
CacheData(
|
||
args_hash=args_hash,
|
||
content=response,
|
||
prompt=query,
|
||
quantized=quantized,
|
||
min_val=min_val,
|
||
max_val=max_val,
|
||
mode=query_param.mode,
|
||
cache_type="query",
|
||
),
|
||
)
|
||
|
||
return response
|
||
|
||
|
||
async def query_with_keywords(
|
||
query: str,
|
||
prompt: str,
|
||
param: QueryParam,
|
||
knowledge_graph_inst: BaseGraphStorage,
|
||
entities_vdb: BaseVectorStorage,
|
||
relationships_vdb: BaseVectorStorage,
|
||
chunks_vdb: BaseVectorStorage,
|
||
text_chunks_db: BaseKVStorage,
|
||
global_config: dict[str, str],
|
||
hashing_kv: BaseKVStorage | None = None,
|
||
) -> str | AsyncIterator[str]:
|
||
"""
|
||
Extract keywords from the query and then use them for retrieving information.
|
||
|
||
1. Extracts high-level and low-level keywords from the query
|
||
2. Formats the query with the extracted keywords and prompt
|
||
3. Uses the appropriate query method based on param.mode
|
||
|
||
Args:
|
||
query: The user's query
|
||
prompt: Additional prompt to prepend to the query
|
||
param: Query parameters
|
||
knowledge_graph_inst: Knowledge graph storage
|
||
entities_vdb: Entities vector database
|
||
relationships_vdb: Relationships vector database
|
||
chunks_vdb: Document chunks vector database
|
||
text_chunks_db: Text chunks storage
|
||
global_config: Global configuration
|
||
hashing_kv: Cache storage
|
||
|
||
Returns:
|
||
Query response or async iterator
|
||
"""
|
||
# Extract keywords
|
||
hl_keywords, ll_keywords = await extract_keywords_only(
|
||
text=query,
|
||
param=param,
|
||
global_config=global_config,
|
||
hashing_kv=hashing_kv,
|
||
)
|
||
|
||
param.hl_keywords = hl_keywords
|
||
param.ll_keywords = ll_keywords
|
||
|
||
# Create a new string with the prompt and the keywords
|
||
ll_keywords_str = ", ".join(ll_keywords)
|
||
hl_keywords_str = ", ".join(hl_keywords)
|
||
formatted_question = f"{prompt}\n\n### Keywords:\nHigh-level: {hl_keywords_str}\nLow-level: {ll_keywords_str}\n\n### Query:\n{query}"
|
||
|
||
# Use appropriate query method based on mode
|
||
if param.mode in ["local", "global", "hybrid"]:
|
||
return await kg_query_with_keywords(
|
||
formatted_question,
|
||
knowledge_graph_inst,
|
||
entities_vdb,
|
||
relationships_vdb,
|
||
text_chunks_db,
|
||
param,
|
||
global_config,
|
||
hashing_kv=hashing_kv,
|
||
)
|
||
elif param.mode == "naive":
|
||
return await naive_query(
|
||
formatted_question,
|
||
chunks_vdb,
|
||
text_chunks_db,
|
||
param,
|
||
global_config,
|
||
hashing_kv=hashing_kv,
|
||
)
|
||
elif param.mode == "mix":
|
||
return await mix_kg_vector_query(
|
||
formatted_question,
|
||
knowledge_graph_inst,
|
||
entities_vdb,
|
||
relationships_vdb,
|
||
chunks_vdb,
|
||
text_chunks_db,
|
||
param,
|
||
global_config,
|
||
hashing_kv=hashing_kv,
|
||
)
|
||
else:
|
||
raise ValueError(f"Unknown mode {param.mode}")
|