LightRAG/examples/lightrag_openai_demo.py

146 lines
4.3 KiB
Python

import os
import asyncio
import logging
import logging.config
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
from lightrag.kg.shared_storage import initialize_pipeline_status
from lightrag.utils import logger, set_verbose_debug
WORKING_DIR = "./dickens"
def configure_logging():
"""Configure logging for the application"""
# Reset any existing handlers to ensure clean configuration
for logger_name in ["uvicorn", "uvicorn.access", "uvicorn.error", "lightrag"]:
logger_instance = logging.getLogger(logger_name)
logger_instance.handlers = []
logger_instance.filters = []
# Get log directory path from environment variable or use current directory
log_dir = os.getenv("LOG_DIR", os.getcwd())
log_file_path = os.path.abspath(os.path.join(log_dir, "lightrag_demo.log"))
print(f"\nLightRAG demo log file: {log_file_path}\n")
os.makedirs(os.path.dirname(log_dir), exist_ok=True)
# Get log file max size and backup count from environment variables
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
logging.config.dictConfig(
{
"version": 1,
"disable_existing_loggers": False,
"formatters": {
"default": {
"format": "%(levelname)s: %(message)s",
},
"detailed": {
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
},
},
"handlers": {
"console": {
"formatter": "default",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr",
},
"file": {
"formatter": "detailed",
"class": "logging.handlers.RotatingFileHandler",
"filename": log_file_path,
"maxBytes": log_max_bytes,
"backupCount": log_backup_count,
"encoding": "utf-8",
},
},
"loggers": {
"lightrag": {
"handlers": ["console", "file"],
"level": "INFO",
"propagate": False,
},
},
}
)
# Set the logger level to INFO
logger.setLevel(logging.INFO)
# Enable verbose debug if needed
set_verbose_debug(os.getenv("VERBOSE_DEBUG", "false").lower() == "true")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
embedding_func=openai_embed,
llm_model_func=gpt_4o_mini_complete,
# llm_model_func=gpt_4o_complete
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
async def main():
# Initialize RAG instance
rag = await initialize_rag()
with open("./book.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())
# Perform naive search
print("\n=====================")
print("Query mode: naive")
print("=====================")
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
)
# Perform local search
print("\n=====================")
print("Query mode: local")
print("=====================")
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
)
# Perform global search
print("\n=====================")
print("Query mode: global")
print("=====================")
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="global")
)
)
# Perform hybrid search
print("\n=====================")
print("Query mode: hybrid")
print("=====================")
print(
await rag.aquery(
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
)
)
if __name__ == "__main__":
# Configure logging before running the main function
configure_logging()
asyncio.run(main())