mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-11-03 19:29:38 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			56 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			56 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						|
import inspect
 | 
						|
from lightrag import LightRAG
 | 
						|
from lightrag.llm import openai_complete, openai_embed
 | 
						|
from lightrag.utils import EmbeddingFunc
 | 
						|
from lightrag.lightrag import always_get_an_event_loop
 | 
						|
from lightrag import QueryParam
 | 
						|
 | 
						|
# WorkingDir
 | 
						|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
 | 
						|
WORKING_DIR = os.path.join(ROOT_DIR, "dickens")
 | 
						|
if not os.path.exists(WORKING_DIR):
 | 
						|
    os.mkdir(WORKING_DIR)
 | 
						|
print(f"WorkingDir: {WORKING_DIR}")
 | 
						|
 | 
						|
api_key = "empty"
 | 
						|
rag = LightRAG(
 | 
						|
    working_dir=WORKING_DIR,
 | 
						|
    llm_model_func=openai_complete,
 | 
						|
    llm_model_name="qwen2.5-14b-instruct@4bit",
 | 
						|
    llm_model_max_async=4,
 | 
						|
    llm_model_max_token_size=32768,
 | 
						|
    llm_model_kwargs={"base_url": "http://127.0.0.1:1234/v1", "api_key": api_key},
 | 
						|
    embedding_func=EmbeddingFunc(
 | 
						|
        embedding_dim=1024,
 | 
						|
        max_token_size=8192,
 | 
						|
        func=lambda texts: openai_embed(
 | 
						|
            texts=texts,
 | 
						|
            model="text-embedding-bge-m3",
 | 
						|
            base_url="http://127.0.0.1:1234/v1",
 | 
						|
            api_key=api_key,
 | 
						|
        ),
 | 
						|
    ),
 | 
						|
)
 | 
						|
 | 
						|
with open("./book.txt", "r", encoding="utf-8") as f:
 | 
						|
    rag.insert(f.read())
 | 
						|
 | 
						|
resp = rag.query(
 | 
						|
    "What are the top themes in this story?",
 | 
						|
    param=QueryParam(mode="hybrid", stream=True),
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
async def print_stream(stream):
 | 
						|
    async for chunk in stream:
 | 
						|
        if chunk:
 | 
						|
            print(chunk, end="", flush=True)
 | 
						|
 | 
						|
 | 
						|
loop = always_get_an_event_loop()
 | 
						|
if inspect.isasyncgen(resp):
 | 
						|
    loop.run_until_complete(print_stream(resp))
 | 
						|
else:
 | 
						|
    print(resp)
 |