LightRAG/examples/lightrag_api_openai_compatible_demo_simplified.py
2025-02-11 16:24:22 +08:00

102 lines
2.7 KiB
Python

import os
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc
import numpy as np
import asyncio
import nest_asyncio
# Apply nest_asyncio to solve event loop issues
nest_asyncio.apply()
DEFAULT_RAG_DIR = "index_default"
# Configure working directory
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
print(f"WORKING_DIR: {WORKING_DIR}")
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini")
print(f"LLM_MODEL: {LLM_MODEL}")
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-small")
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
BASE_URL = os.environ.get("BASE_URL", "https://api.openai.com/v1")
print(f"BASE_URL: {BASE_URL}")
API_KEY = os.environ.get("API_KEY", "xxxxxxxx")
print(f"API_KEY: {API_KEY}")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
# LLM model function
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
return await openai_complete_if_cache(
model=LLM_MODEL,
prompt=prompt,
system_prompt=system_prompt,
history_messages=history_messages,
base_url=BASE_URL,
api_key=API_KEY,
**kwargs,
)
# Embedding function
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embed(
texts=texts,
model=EMBEDDING_MODEL,
base_url=BASE_URL,
api_key=API_KEY,
)
async def get_embedding_dim():
test_text = ["This is a test sentence."]
embedding = await embedding_func(test_text)
embedding_dim = embedding.shape[1]
print(f"{embedding_dim=}")
return embedding_dim
# Initialize RAG instance
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=asyncio.run(get_embedding_dim()),
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
func=embedding_func,
),
)
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
# Perform naive search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
)
# Perform local search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
)
# Perform global search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
)
# Perform hybrid search
print(
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
)