mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-25 09:50:20 +00:00
189 lines
7.5 KiB
Python
189 lines
7.5 KiB
Python
import asyncio
|
|
from dataclasses import dataclass
|
|
from typing import Union
|
|
import numpy as np
|
|
from chromadb import HttpClient, PersistentClient
|
|
from chromadb.config import Settings
|
|
from lightrag.base import BaseVectorStorage
|
|
from lightrag.utils import logger
|
|
|
|
|
|
@dataclass
|
|
class ChromaVectorDBStorage(BaseVectorStorage):
|
|
"""ChromaDB vector storage implementation."""
|
|
|
|
cosine_better_than_threshold: float = None
|
|
|
|
def __post_init__(self):
|
|
try:
|
|
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
|
cosine_threshold = config.get("cosine_better_than_threshold")
|
|
if cosine_threshold is None:
|
|
raise ValueError(
|
|
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
|
|
)
|
|
self.cosine_better_than_threshold = cosine_threshold
|
|
|
|
user_collection_settings = config.get("collection_settings", {})
|
|
# Default HNSW index settings for ChromaDB
|
|
default_collection_settings = {
|
|
# Distance metric used for similarity search (cosine similarity)
|
|
"hnsw:space": "cosine",
|
|
# Number of nearest neighbors to explore during index construction
|
|
# Higher values = better recall but slower indexing
|
|
"hnsw:construction_ef": 128,
|
|
# Number of nearest neighbors to explore during search
|
|
# Higher values = better recall but slower search
|
|
"hnsw:search_ef": 128,
|
|
# Number of connections per node in the HNSW graph
|
|
# Higher values = better recall but more memory usage
|
|
"hnsw:M": 16,
|
|
# Number of vectors to process in one batch during indexing
|
|
"hnsw:batch_size": 100,
|
|
# Number of updates before forcing index synchronization
|
|
# Lower values = more frequent syncs but slower indexing
|
|
"hnsw:sync_threshold": 1000,
|
|
}
|
|
collection_settings = {
|
|
**default_collection_settings,
|
|
**user_collection_settings,
|
|
}
|
|
|
|
local_path = config.get("local_path", None)
|
|
if local_path:
|
|
self._client = PersistentClient(
|
|
path=local_path,
|
|
settings=Settings(
|
|
allow_reset=True,
|
|
anonymized_telemetry=False,
|
|
),
|
|
)
|
|
else:
|
|
auth_provider = config.get(
|
|
"auth_provider", "chromadb.auth.token_authn.TokenAuthClientProvider"
|
|
)
|
|
auth_credentials = config.get("auth_token", "secret-token")
|
|
headers = {}
|
|
|
|
if "token_authn" in auth_provider:
|
|
headers = {
|
|
config.get(
|
|
"auth_header_name", "X-Chroma-Token"
|
|
): auth_credentials
|
|
}
|
|
elif "basic_authn" in auth_provider:
|
|
auth_credentials = config.get("auth_credentials", "admin:admin")
|
|
|
|
self._client = HttpClient(
|
|
host=config.get("host", "localhost"),
|
|
port=config.get("port", 8000),
|
|
headers=headers,
|
|
settings=Settings(
|
|
chroma_api_impl="rest",
|
|
chroma_client_auth_provider=auth_provider,
|
|
chroma_client_auth_credentials=auth_credentials,
|
|
allow_reset=True,
|
|
anonymized_telemetry=False,
|
|
),
|
|
)
|
|
|
|
self._collection = self._client.get_or_create_collection(
|
|
name=self.namespace,
|
|
metadata={
|
|
**collection_settings,
|
|
"dimension": self.embedding_func.embedding_dim,
|
|
},
|
|
)
|
|
# Use batch size from collection settings if specified
|
|
self._max_batch_size = self.global_config.get(
|
|
"embedding_batch_num", collection_settings.get("hnsw:batch_size", 32)
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"ChromaDB initialization failed: {str(e)}")
|
|
raise
|
|
|
|
async def upsert(self, data: dict[str, dict]):
|
|
if not data:
|
|
logger.warning("Empty data provided to vector DB")
|
|
return []
|
|
|
|
try:
|
|
ids = list(data.keys())
|
|
documents = [v["content"] for v in data.values()]
|
|
metadatas = [
|
|
{k: v for k, v in item.items() if k in self.meta_fields}
|
|
or {"_default": "true"}
|
|
for item in data.values()
|
|
]
|
|
|
|
# Process in batches
|
|
batches = [
|
|
documents[i : i + self._max_batch_size]
|
|
for i in range(0, len(documents), self._max_batch_size)
|
|
]
|
|
|
|
embedding_tasks = [self.embedding_func(batch) for batch in batches]
|
|
embeddings_list = []
|
|
|
|
# Pre-allocate embeddings_list with known size
|
|
embeddings_list = [None] * len(embedding_tasks)
|
|
|
|
# Use asyncio.gather instead of as_completed if order doesn't matter
|
|
embeddings_results = await asyncio.gather(*embedding_tasks)
|
|
embeddings_list = list(embeddings_results)
|
|
|
|
embeddings = np.concatenate(embeddings_list)
|
|
|
|
# Upsert in batches
|
|
for i in range(0, len(ids), self._max_batch_size):
|
|
batch_slice = slice(i, i + self._max_batch_size)
|
|
|
|
self._collection.upsert(
|
|
ids=ids[batch_slice],
|
|
embeddings=embeddings[batch_slice].tolist(),
|
|
documents=documents[batch_slice],
|
|
metadatas=metadatas[batch_slice],
|
|
)
|
|
|
|
return ids
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error during ChromaDB upsert: {str(e)}")
|
|
raise
|
|
|
|
async def query(self, query: str, top_k=5) -> Union[dict, list[dict]]:
|
|
try:
|
|
embedding = await self.embedding_func([query])
|
|
|
|
results = self._collection.query(
|
|
query_embeddings=embedding.tolist()
|
|
if not isinstance(embedding, list)
|
|
else embedding,
|
|
n_results=top_k * 2, # Request more results to allow for filtering
|
|
include=["metadatas", "distances", "documents"],
|
|
)
|
|
|
|
# Filter results by cosine similarity threshold and take top k
|
|
# We request 2x results initially to have enough after filtering
|
|
# ChromaDB returns cosine similarity (1 = identical, 0 = orthogonal)
|
|
# We convert to distance (0 = identical, 1 = orthogonal) via (1 - similarity)
|
|
# Only keep results with distance below threshold, then take top k
|
|
return [
|
|
{
|
|
"id": results["ids"][0][i],
|
|
"distance": 1 - results["distances"][0][i],
|
|
"content": results["documents"][0][i],
|
|
**results["metadatas"][0][i],
|
|
}
|
|
for i in range(len(results["ids"][0]))
|
|
if (1 - results["distances"][0][i]) >= self.cosine_better_than_threshold
|
|
][:top_k]
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error during ChromaDB query: {str(e)}")
|
|
raise
|
|
|
|
async def index_done_callback(self):
|
|
# ChromaDB handles persistence automatically
|
|
pass
|