LightRAG/lightrag/kg/milvus_impl.py
2025-02-14 03:00:56 +08:00

126 lines
4.2 KiB
Python

import asyncio
import os
from tqdm.asyncio import tqdm as tqdm_async
from dataclasses import dataclass
import numpy as np
from lightrag.utils import logger
from ..base import BaseVectorStorage
import pipmaster as pm
import configparser
if not pm.is_installed("pymilvus"):
pm.install("pymilvus")
from pymilvus import MilvusClient
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
@dataclass
class MilvusVectorDBStorage(BaseVectorStorage):
cosine_better_than_threshold: float = None
@staticmethod
def create_collection_if_not_exist(
client: MilvusClient, collection_name: str, **kwargs
):
if client.has_collection(collection_name):
return
client.create_collection(
collection_name, max_length=64, id_type="string", **kwargs
)
def __post_init__(self):
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
cosine_threshold = kwargs.get("cosine_better_than_threshold")
if cosine_threshold is None:
raise ValueError(
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
)
self.cosine_better_than_threshold = cosine_threshold
self._client = MilvusClient(
uri=os.environ.get(
"MILVUS_URI",
config.get(
"milvus",
"uri",
fallback=os.path.join(
self.global_config["working_dir"], "milvus_lite.db"
),
),
),
user=os.environ.get(
"MILVUS_USER", config.get("milvus", "user", fallback=None)
),
password=os.environ.get(
"MILVUS_PASSWORD", config.get("milvus", "password", fallback=None)
),
token=os.environ.get(
"MILVUS_TOKEN", config.get("milvus", "token", fallback=None)
),
db_name=os.environ.get(
"MILVUS_DB_NAME", config.get("milvus", "db_name", fallback=None)
),
)
self._max_batch_size = self.global_config["embedding_batch_num"]
MilvusVectorDBStorage.create_collection_if_not_exist(
self._client,
self.namespace,
dimension=self.embedding_func.embedding_dim,
)
async def upsert(self, data: dict[str, dict]):
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
if not len(data):
logger.warning("You insert an empty data to vector DB")
return []
list_data = [
{
"id": k,
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
async def wrapped_task(batch):
result = await self.embedding_func(batch)
pbar.update(1)
return result
embedding_tasks = [wrapped_task(batch) for batch in batches]
pbar = tqdm_async(
total=len(embedding_tasks), desc="Generating embeddings", unit="batch"
)
embeddings_list = await asyncio.gather(*embedding_tasks)
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["vector"] = embeddings[i]
results = self._client.upsert(collection_name=self.namespace, data=list_data)
return results
async def query(self, query, top_k=5):
embedding = await self.embedding_func([query])
results = self._client.search(
collection_name=self.namespace,
data=embedding,
limit=top_k,
output_fields=list(self.meta_fields),
search_params={
"metric_type": "COSINE",
"params": {"radius": self.cosine_better_than_threshold},
},
)
print(results)
return [
{**dp["entity"], "id": dp["id"], "distance": dp["distance"]}
for dp in results[0]
]