mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-25 09:50:20 +00:00
126 lines
4.2 KiB
Python
126 lines
4.2 KiB
Python
import asyncio
|
|
import os
|
|
from tqdm.asyncio import tqdm as tqdm_async
|
|
from dataclasses import dataclass
|
|
import numpy as np
|
|
from lightrag.utils import logger
|
|
from ..base import BaseVectorStorage
|
|
import pipmaster as pm
|
|
import configparser
|
|
|
|
if not pm.is_installed("pymilvus"):
|
|
pm.install("pymilvus")
|
|
from pymilvus import MilvusClient
|
|
|
|
|
|
config = configparser.ConfigParser()
|
|
config.read("config.ini", "utf-8")
|
|
|
|
|
|
@dataclass
|
|
class MilvusVectorDBStorage(BaseVectorStorage):
|
|
cosine_better_than_threshold: float = None
|
|
|
|
@staticmethod
|
|
def create_collection_if_not_exist(
|
|
client: MilvusClient, collection_name: str, **kwargs
|
|
):
|
|
if client.has_collection(collection_name):
|
|
return
|
|
client.create_collection(
|
|
collection_name, max_length=64, id_type="string", **kwargs
|
|
)
|
|
|
|
def __post_init__(self):
|
|
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
|
cosine_threshold = kwargs.get("cosine_better_than_threshold")
|
|
if cosine_threshold is None:
|
|
raise ValueError(
|
|
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
|
|
)
|
|
self.cosine_better_than_threshold = cosine_threshold
|
|
|
|
self._client = MilvusClient(
|
|
uri=os.environ.get(
|
|
"MILVUS_URI",
|
|
config.get(
|
|
"milvus",
|
|
"uri",
|
|
fallback=os.path.join(
|
|
self.global_config["working_dir"], "milvus_lite.db"
|
|
),
|
|
),
|
|
),
|
|
user=os.environ.get(
|
|
"MILVUS_USER", config.get("milvus", "user", fallback=None)
|
|
),
|
|
password=os.environ.get(
|
|
"MILVUS_PASSWORD", config.get("milvus", "password", fallback=None)
|
|
),
|
|
token=os.environ.get(
|
|
"MILVUS_TOKEN", config.get("milvus", "token", fallback=None)
|
|
),
|
|
db_name=os.environ.get(
|
|
"MILVUS_DB_NAME", config.get("milvus", "db_name", fallback=None)
|
|
),
|
|
)
|
|
self._max_batch_size = self.global_config["embedding_batch_num"]
|
|
MilvusVectorDBStorage.create_collection_if_not_exist(
|
|
self._client,
|
|
self.namespace,
|
|
dimension=self.embedding_func.embedding_dim,
|
|
)
|
|
|
|
async def upsert(self, data: dict[str, dict]):
|
|
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
|
if not len(data):
|
|
logger.warning("You insert an empty data to vector DB")
|
|
return []
|
|
list_data = [
|
|
{
|
|
"id": k,
|
|
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
|
|
}
|
|
for k, v in data.items()
|
|
]
|
|
contents = [v["content"] for v in data.values()]
|
|
batches = [
|
|
contents[i : i + self._max_batch_size]
|
|
for i in range(0, len(contents), self._max_batch_size)
|
|
]
|
|
|
|
async def wrapped_task(batch):
|
|
result = await self.embedding_func(batch)
|
|
pbar.update(1)
|
|
return result
|
|
|
|
embedding_tasks = [wrapped_task(batch) for batch in batches]
|
|
pbar = tqdm_async(
|
|
total=len(embedding_tasks), desc="Generating embeddings", unit="batch"
|
|
)
|
|
embeddings_list = await asyncio.gather(*embedding_tasks)
|
|
|
|
embeddings = np.concatenate(embeddings_list)
|
|
for i, d in enumerate(list_data):
|
|
d["vector"] = embeddings[i]
|
|
results = self._client.upsert(collection_name=self.namespace, data=list_data)
|
|
return results
|
|
|
|
async def query(self, query, top_k=5):
|
|
embedding = await self.embedding_func([query])
|
|
results = self._client.search(
|
|
collection_name=self.namespace,
|
|
data=embedding,
|
|
limit=top_k,
|
|
output_fields=list(self.meta_fields),
|
|
search_params={
|
|
"metric_type": "COSINE",
|
|
"params": {"radius": self.cosine_better_than_threshold},
|
|
},
|
|
)
|
|
print(results)
|
|
return [
|
|
{**dp["entity"], "id": dp["id"], "distance": dp["distance"]}
|
|
for dp in results[0]
|
|
]
|