LightRAG/lightrag/kg/qdrant_impl.py

146 lines
4.8 KiB
Python

import asyncio
import os
from tqdm.asyncio import tqdm as tqdm_async
from dataclasses import dataclass
import numpy as np
import hashlib
import uuid
from ..utils import logger
from ..base import BaseVectorStorage
import pipmaster as pm
import configparser
if not pm.is_installed("qdrant_client"):
pm.install("qdrant_client")
from qdrant_client import QdrantClient, models
config = configparser.ConfigParser()
config.read("config.ini", "utf-8")
def compute_mdhash_id_for_qdrant(
content: str, prefix: str = "", style: str = "simple"
) -> str:
"""
Generate a UUID based on the content and support multiple formats.
:param content: The content used to generate the UUID.
:param style: The format of the UUID, optional values are "simple", "hyphenated", "urn".
:return: A UUID that meets the requirements of Qdrant.
"""
if not content:
raise ValueError("Content must not be empty.")
# Use the hash value of the content to create a UUID.
hashed_content = hashlib.sha256((prefix + content).encode("utf-8")).digest()
generated_uuid = uuid.UUID(bytes=hashed_content[:16], version=4)
# Return the UUID according to the specified format.
if style == "simple":
return generated_uuid.hex
elif style == "hyphenated":
return str(generated_uuid)
elif style == "urn":
return f"urn:uuid:{generated_uuid}"
else:
raise ValueError("Invalid style. Choose from 'simple', 'hyphenated', or 'urn'.")
@dataclass
class QdrantVectorDBStorage(BaseVectorStorage):
cosine_better_than_threshold: float = None
@staticmethod
def create_collection_if_not_exist(
client: QdrantClient, collection_name: str, **kwargs
):
if client.collection_exists(collection_name):
return
client.create_collection(collection_name, **kwargs)
def __post_init__(self):
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
cosine_threshold = kwargs.get("cosine_better_than_threshold")
if cosine_threshold is None:
raise ValueError(
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
)
self.cosine_better_than_threshold = cosine_threshold
self._client = QdrantClient(
url=os.environ.get(
"QDRANT_URL", config.get("qdrant", "uri", fallback=None)
),
api_key=os.environ.get(
"QDRANT_API_KEY", config.get("qdrant", "apikey", fallback=None)
),
)
self._max_batch_size = self.global_config["embedding_batch_num"]
QdrantVectorDBStorage.create_collection_if_not_exist(
self._client,
self.namespace,
vectors_config=models.VectorParams(
size=self.embedding_func.embedding_dim, distance=models.Distance.COSINE
),
)
async def upsert(self, data: dict[str, dict]):
if not len(data):
logger.warning("You insert an empty data to vector DB")
return []
list_data = [
{
"id": k,
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
async def wrapped_task(batch):
result = await self.embedding_func(batch)
pbar.update(1)
return result
embedding_tasks = [wrapped_task(batch) for batch in batches]
pbar = tqdm_async(
total=len(embedding_tasks), desc="Generating embeddings", unit="batch"
)
embeddings_list = await asyncio.gather(*embedding_tasks)
embeddings = np.concatenate(embeddings_list)
list_points = []
for i, d in enumerate(list_data):
list_points.append(
models.PointStruct(
id=compute_mdhash_id_for_qdrant(d["id"]),
vector=embeddings[i],
payload=d,
)
)
results = self._client.upsert(
collection_name=self.namespace, points=list_points, wait=True
)
return results
async def query(self, query, top_k=5):
embedding = await self.embedding_func([query])
results = self._client.search(
collection_name=self.namespace,
query_vector=embedding[0],
limit=top_k,
with_payload=True,
score_threshold=self.cosine_better_than_threshold,
)
logger.debug(f"query result: {results}")
return [{**dp.payload, "id": dp.id, "distance": dp.score} for dp in results]