LightRAG/lightrag/kg/tidb_impl.py
2025-02-13 04:12:00 +08:00

683 lines
27 KiB
Python

import asyncio
import os
from dataclasses import dataclass
from typing import Any, Union
import numpy as np
import pipmaster as pm
if not pm.is_installed("pymysql"):
pm.install("pymysql")
if not pm.is_installed("sqlalchemy"):
pm.install("sqlalchemy")
from sqlalchemy import create_engine, text
from tqdm import tqdm
from ..base import BaseGraphStorage, BaseKVStorage, BaseVectorStorage
from ..namespace import NameSpace, is_namespace
from ..utils import logger
class TiDB:
def __init__(self, config, **kwargs):
self.host = config.get("host", None)
self.port = config.get("port", None)
self.user = config.get("user", None)
self.password = config.get("password", None)
self.database = config.get("database", None)
self.workspace = config.get("workspace", None)
connection_string = (
f"mysql+pymysql://{self.user}:{self.password}@{self.host}:{self.port}/{self.database}"
f"?ssl_verify_cert=true&ssl_verify_identity=true"
)
try:
self.engine = create_engine(connection_string)
logger.info(f"Connected to TiDB database at {self.database}")
except Exception as e:
logger.error(f"Failed to connect to TiDB database at {self.database}")
logger.error(f"TiDB database error: {e}")
raise
async def check_tables(self):
for k, v in TABLES.items():
try:
await self.query(f"SELECT 1 FROM {k}".format(k=k))
except Exception as e:
logger.error(f"Failed to check table {k} in TiDB database")
logger.error(f"TiDB database error: {e}")
try:
# print(v["ddl"])
await self.execute(v["ddl"])
logger.info(f"Created table {k} in TiDB database")
except Exception as e:
logger.error(f"Failed to create table {k} in TiDB database")
logger.error(f"TiDB database error: {e}")
async def query(
self, sql: str, params: dict = None, multirows: bool = False
) -> Union[dict, None]:
if params is None:
params = {"workspace": self.workspace}
else:
params.update({"workspace": self.workspace})
with self.engine.connect() as conn, conn.begin():
try:
result = conn.execute(text(sql), params)
except Exception as e:
logger.error(f"Tidb database error: {e}")
print(sql)
print(params)
raise
if multirows:
rows = result.all()
if rows:
data = [dict(zip(result.keys(), row)) for row in rows]
else:
data = []
else:
row = result.first()
if row:
data = dict(zip(result.keys(), row))
else:
data = None
return data
async def execute(self, sql: str, data: list | dict = None):
# logger.info("go into TiDBDB execute method")
try:
with self.engine.connect() as conn, conn.begin():
if data is None:
conn.execute(text(sql))
else:
conn.execute(text(sql), parameters=data)
except Exception as e:
logger.error(f"TiDB database error: {e}")
print(sql)
print(data)
raise
@dataclass
class TiDBKVStorage(BaseKVStorage):
# db instance must be injected before use
# db: TiDB
def __post_init__(self):
self._data = {}
self._max_batch_size = self.global_config["embedding_batch_num"]
################ QUERY METHODS ################
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
"""Fetch doc_full data by id."""
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
params = {"id": id}
response = await self.db.query(SQL, params)
return response if response else None
# Query by id
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Fetch doc_chunks data by id"""
SQL = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
ids=",".join([f"'{id}'" for id in ids])
)
return await self.db.query(SQL, multirows=True)
async def filter_keys(self, keys: list[str]) -> set[str]:
"""过滤掉重复内容"""
SQL = SQL_TEMPLATES["filter_keys"].format(
table_name=namespace_to_table_name(self.namespace),
id_field=namespace_to_id(self.namespace),
ids=",".join([f"'{id}'" for id in keys]),
)
try:
await self.db.query(SQL)
except Exception as e:
logger.error(f"Tidb database error: {e}")
print(SQL)
res = await self.db.query(SQL, multirows=True)
if res:
exist_keys = [key["id"] for key in res]
data = set([s for s in keys if s not in exist_keys])
else:
exist_keys = []
data = set([s for s in keys if s not in exist_keys])
return data
################ INSERT full_doc AND chunks ################
async def upsert(self, data: dict[str, Any]) -> None:
left_data = {k: v for k, v in data.items() if k not in self._data}
self._data.update(left_data)
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
list_data = [
{
"__id__": k,
**{k1: v1 for k1, v1 in v.items()},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embeddings_list = await asyncio.gather(
*[self.embedding_func(batch) for batch in batches]
)
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["__vector__"] = embeddings[i]
merge_sql = SQL_TEMPLATES["upsert_chunk"]
data = []
for item in list_data:
data.append(
{
"id": item["__id__"],
"content": item["content"],
"tokens": item["tokens"],
"chunk_order_index": item["chunk_order_index"],
"full_doc_id": item["full_doc_id"],
"content_vector": f'{item["__vector__"].tolist()}',
"workspace": self.db.workspace,
}
)
await self.db.execute(merge_sql, data)
if is_namespace(self.namespace, NameSpace.KV_STORE_FULL_DOCS):
merge_sql = SQL_TEMPLATES["upsert_doc_full"]
data = []
for k, v in self._data.items():
data.append(
{
"id": k,
"content": v["content"],
"workspace": self.db.workspace,
}
)
await self.db.execute(merge_sql, data)
return left_data
async def index_done_callback(self):
if is_namespace(
self.namespace,
(NameSpace.KV_STORE_FULL_DOCS, NameSpace.KV_STORE_TEXT_CHUNKS),
):
logger.info("full doc and chunk data had been saved into TiDB db!")
@dataclass
class TiDBVectorDBStorage(BaseVectorStorage):
# db instance must be injected before use
# db: TiDB
cosine_better_than_threshold: float = None
def __post_init__(self):
self._client_file_name = os.path.join(
self.global_config["working_dir"], f"vdb_{self.namespace}.json"
)
self._max_batch_size = self.global_config["embedding_batch_num"]
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
cosine_threshold = config.get("cosine_better_than_threshold")
if cosine_threshold is None:
raise ValueError(
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
)
self.cosine_better_than_threshold = cosine_threshold
async def query(self, query: str, top_k: int) -> list[dict]:
"""Search from tidb vector"""
embeddings = await self.embedding_func([query])
embedding = embeddings[0]
embedding_string = "[" + ", ".join(map(str, embedding.tolist())) + "]"
params = {
"embedding_string": embedding_string,
"top_k": top_k,
"better_than_threshold": self.cosine_better_than_threshold,
}
results = await self.db.query(
SQL_TEMPLATES[self.namespace], params=params, multirows=True
)
print("vector search result:", results)
if not results:
return []
return results
###### INSERT entities And relationships ######
async def upsert(self, data: dict[str, dict]):
# ignore, upsert in TiDBKVStorage already
if not len(data):
logger.warning("You insert an empty data to vector DB")
return []
if is_namespace(self.namespace, NameSpace.VECTOR_STORE_CHUNKS):
return []
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
list_data = [
{
"id": k,
**{k1: v1 for k1, v1 in v.items()},
}
for k, v in data.items()
]
contents = [v["content"] for v in data.values()]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embedding_tasks = [self.embedding_func(batch) for batch in batches]
embeddings_list = []
for f in tqdm(
asyncio.as_completed(embedding_tasks),
total=len(embedding_tasks),
desc="Generating embeddings",
unit="batch",
):
embeddings = await f
embeddings_list.append(embeddings)
embeddings = np.concatenate(embeddings_list)
for i, d in enumerate(list_data):
d["content_vector"] = embeddings[i]
if is_namespace(self.namespace, NameSpace.VECTOR_STORE_ENTITIES):
data = []
for item in list_data:
param = {
"id": item["id"],
"name": item["entity_name"],
"content": item["content"],
"content_vector": f'{item["content_vector"].tolist()}',
"workspace": self.db.workspace,
}
# update entity_id if node inserted by graph_storage_instance before
has = await self.db.query(SQL_TEMPLATES["has_entity"], param)
if has["cnt"] != 0:
await self.db.execute(SQL_TEMPLATES["update_entity"], param)
continue
data.append(param)
if data:
merge_sql = SQL_TEMPLATES["insert_entity"]
await self.db.execute(merge_sql, data)
elif is_namespace(self.namespace, NameSpace.VECTOR_STORE_RELATIONSHIPS):
data = []
for item in list_data:
param = {
"id": item["id"],
"source_name": item["src_id"],
"target_name": item["tgt_id"],
"content": item["content"],
"content_vector": f'{item["content_vector"].tolist()}',
"workspace": self.db.workspace,
}
# update relation_id if node inserted by graph_storage_instance before
has = await self.db.query(SQL_TEMPLATES["has_relationship"], param)
if has["cnt"] != 0:
await self.db.execute(SQL_TEMPLATES["update_relationship"], param)
continue
data.append(param)
if data:
merge_sql = SQL_TEMPLATES["insert_relationship"]
await self.db.execute(merge_sql, data)
async def get_by_status(self, status: str) -> Union[list[dict[str, Any]], None]:
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
params = {"workspace": self.db.workspace, "status": status}
return await self.db.query(SQL, params, multirows=True)
@dataclass
class TiDBGraphStorage(BaseGraphStorage):
# db instance must be injected before use
# db: TiDB
def __post_init__(self):
self._max_batch_size = self.global_config["embedding_batch_num"]
#################### upsert method ################
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
entity_name = node_id
entity_type = node_data["entity_type"]
description = node_data["description"]
source_id = node_data["source_id"]
logger.debug(f"entity_name:{entity_name}, entity_type:{entity_type}")
content = entity_name + description
contents = [content]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embeddings_list = await asyncio.gather(
*[self.embedding_func(batch) for batch in batches]
)
embeddings = np.concatenate(embeddings_list)
content_vector = embeddings[0]
sql = SQL_TEMPLATES["upsert_node"]
data = {
"workspace": self.db.workspace,
"name": entity_name,
"entity_type": entity_type,
"description": description,
"source_chunk_id": source_id,
"content": content,
"content_vector": f"{content_vector.tolist()}",
}
await self.db.execute(sql, data)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
):
source_name = source_node_id
target_name = target_node_id
weight = edge_data["weight"]
keywords = edge_data["keywords"]
description = edge_data["description"]
source_chunk_id = edge_data["source_id"]
logger.debug(
f"source_name:{source_name}, target_name:{target_name}, keywords: {keywords}"
)
content = keywords + source_name + target_name + description
contents = [content]
batches = [
contents[i : i + self._max_batch_size]
for i in range(0, len(contents), self._max_batch_size)
]
embeddings_list = await asyncio.gather(
*[self.embedding_func(batch) for batch in batches]
)
embeddings = np.concatenate(embeddings_list)
content_vector = embeddings[0]
merge_sql = SQL_TEMPLATES["upsert_edge"]
data = {
"workspace": self.db.workspace,
"source_name": source_name,
"target_name": target_name,
"weight": weight,
"keywords": keywords,
"description": description,
"source_chunk_id": source_chunk_id,
"content": content,
"content_vector": f"{content_vector.tolist()}",
}
await self.db.execute(merge_sql, data)
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
if algorithm not in self._node_embed_algorithms:
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
return await self._node_embed_algorithms[algorithm]()
# Query
async def has_node(self, node_id: str) -> bool:
sql = SQL_TEMPLATES["has_entity"]
param = {"name": node_id, "workspace": self.db.workspace}
has = await self.db.query(sql, param)
return has["cnt"] != 0
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
sql = SQL_TEMPLATES["has_relationship"]
param = {
"source_name": source_node_id,
"target_name": target_node_id,
"workspace": self.db.workspace,
}
has = await self.db.query(sql, param)
return has["cnt"] != 0
async def node_degree(self, node_id: str) -> int:
sql = SQL_TEMPLATES["node_degree"]
param = {"name": node_id, "workspace": self.db.workspace}
result = await self.db.query(sql, param)
return result["cnt"]
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
degree = await self.node_degree(src_id) + await self.node_degree(tgt_id)
return degree
async def get_node(self, node_id: str) -> Union[dict, None]:
sql = SQL_TEMPLATES["get_node"]
param = {"name": node_id, "workspace": self.db.workspace}
return await self.db.query(sql, param)
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> Union[dict, None]:
sql = SQL_TEMPLATES["get_edge"]
param = {
"source_name": source_node_id,
"target_name": target_node_id,
"workspace": self.db.workspace,
}
return await self.db.query(sql, param)
async def get_node_edges(
self, source_node_id: str
) -> Union[list[tuple[str, str]], None]:
sql = SQL_TEMPLATES["get_node_edges"]
param = {"source_name": source_node_id, "workspace": self.db.workspace}
res = await self.db.query(sql, param, multirows=True)
if res:
data = [(i["source_name"], i["target_name"]) for i in res]
return data
else:
return []
N_T = {
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
NameSpace.KV_STORE_TEXT_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
NameSpace.VECTOR_STORE_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
NameSpace.VECTOR_STORE_ENTITIES: "LIGHTRAG_GRAPH_NODES",
NameSpace.VECTOR_STORE_RELATIONSHIPS: "LIGHTRAG_GRAPH_EDGES",
}
N_ID = {
NameSpace.KV_STORE_FULL_DOCS: "doc_id",
NameSpace.KV_STORE_TEXT_CHUNKS: "chunk_id",
NameSpace.VECTOR_STORE_CHUNKS: "chunk_id",
NameSpace.VECTOR_STORE_ENTITIES: "entity_id",
NameSpace.VECTOR_STORE_RELATIONSHIPS: "relation_id",
}
def namespace_to_table_name(namespace: str) -> str:
for k, v in N_T.items():
if is_namespace(namespace, k):
return v
def namespace_to_id(namespace: str) -> str:
for k, v in N_ID.items():
if is_namespace(namespace, k):
return v
TABLES = {
"LIGHTRAG_DOC_FULL": {
"ddl": """
CREATE TABLE LIGHTRAG_DOC_FULL (
`id` BIGINT PRIMARY KEY AUTO_RANDOM,
`doc_id` VARCHAR(256) NOT NULL,
`workspace` varchar(1024),
`content` LONGTEXT,
`meta` JSON,
`createtime` TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
`updatetime` TIMESTAMP DEFAULT NULL,
UNIQUE KEY (`doc_id`)
);
"""
},
"LIGHTRAG_DOC_CHUNKS": {
"ddl": """
CREATE TABLE LIGHTRAG_DOC_CHUNKS (
`id` BIGINT PRIMARY KEY AUTO_RANDOM,
`chunk_id` VARCHAR(256) NOT NULL,
`full_doc_id` VARCHAR(256) NOT NULL,
`workspace` varchar(1024),
`chunk_order_index` INT,
`tokens` INT,
`content` LONGTEXT,
`content_vector` VECTOR,
`createtime` DATETIME DEFAULT CURRENT_TIMESTAMP,
`updatetime` DATETIME DEFAULT NULL,
UNIQUE KEY (`chunk_id`)
);
"""
},
"LIGHTRAG_GRAPH_NODES": {
"ddl": """
CREATE TABLE LIGHTRAG_GRAPH_NODES (
`id` BIGINT PRIMARY KEY AUTO_RANDOM,
`entity_id` VARCHAR(256),
`workspace` varchar(1024),
`name` VARCHAR(2048),
`entity_type` VARCHAR(1024),
`description` LONGTEXT,
`source_chunk_id` VARCHAR(256),
`content` LONGTEXT,
`content_vector` VECTOR,
`createtime` DATETIME DEFAULT CURRENT_TIMESTAMP,
`updatetime` DATETIME DEFAULT NULL,
KEY (`entity_id`)
);
"""
},
"LIGHTRAG_GRAPH_EDGES": {
"ddl": """
CREATE TABLE LIGHTRAG_GRAPH_EDGES (
`id` BIGINT PRIMARY KEY AUTO_RANDOM,
`relation_id` VARCHAR(256),
`workspace` varchar(1024),
`source_name` VARCHAR(2048),
`target_name` VARCHAR(2048),
`weight` DECIMAL,
`keywords` TEXT,
`description` LONGTEXT,
`source_chunk_id` varchar(256),
`content` LONGTEXT,
`content_vector` VECTOR,
`createtime` DATETIME DEFAULT CURRENT_TIMESTAMP,
`updatetime` DATETIME DEFAULT NULL,
KEY (`relation_id`)
);
"""
},
"LIGHTRAG_LLM_CACHE": {
"ddl": """
CREATE TABLE LIGHTRAG_LLM_CACHE (
id BIGINT PRIMARY KEY AUTO_INCREMENT,
send TEXT,
return TEXT,
model VARCHAR(1024),
createtime DATETIME DEFAULT CURRENT_TIMESTAMP,
updatetime DATETIME DEFAULT NULL
);
"""
},
}
SQL_TEMPLATES = {
# SQL for KVStorage
"get_by_id_full_docs": "SELECT doc_id as id, IFNULL(content, '') AS content FROM LIGHTRAG_DOC_FULL WHERE doc_id = :id AND workspace = :workspace",
"get_by_id_text_chunks": "SELECT chunk_id as id, tokens, IFNULL(content, '') AS content, chunk_order_index, full_doc_id FROM LIGHTRAG_DOC_CHUNKS WHERE chunk_id = :id AND workspace = :workspace",
"get_by_ids_full_docs": "SELECT doc_id as id, IFNULL(content, '') AS content FROM LIGHTRAG_DOC_FULL WHERE doc_id IN ({ids}) AND workspace = :workspace",
"get_by_ids_text_chunks": "SELECT chunk_id as id, tokens, IFNULL(content, '') AS content, chunk_order_index, full_doc_id FROM LIGHTRAG_DOC_CHUNKS WHERE chunk_id IN ({ids}) AND workspace = :workspace",
"filter_keys": "SELECT {id_field} AS id FROM {table_name} WHERE {id_field} IN ({ids}) AND workspace = :workspace",
# SQL for Merge operations (TiDB version with INSERT ... ON DUPLICATE KEY UPDATE)
"upsert_doc_full": """
INSERT INTO LIGHTRAG_DOC_FULL (doc_id, content, workspace)
VALUES (:id, :content, :workspace)
ON DUPLICATE KEY UPDATE content = VALUES(content), workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP
""",
"upsert_chunk": """
INSERT INTO LIGHTRAG_DOC_CHUNKS(chunk_id, content, tokens, chunk_order_index, full_doc_id, content_vector, workspace)
VALUES (:id, :content, :tokens, :chunk_order_index, :full_doc_id, :content_vector, :workspace)
ON DUPLICATE KEY UPDATE
content = VALUES(content), tokens = VALUES(tokens), chunk_order_index = VALUES(chunk_order_index),
full_doc_id = VALUES(full_doc_id), content_vector = VALUES(content_vector), workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP
""",
# SQL for VectorStorage
"entities": """SELECT n.name as entity_name FROM
(SELECT entity_id as id, name, VEC_COSINE_DISTANCE(content_vector,:embedding_string) as distance
FROM LIGHTRAG_GRAPH_NODES WHERE workspace = :workspace) n
WHERE n.distance>:better_than_threshold ORDER BY n.distance DESC LIMIT :top_k
""",
"relationships": """SELECT e.source_name as src_id, e.target_name as tgt_id FROM
(SELECT source_name, target_name, VEC_COSINE_DISTANCE(content_vector, :embedding_string) as distance
FROM LIGHTRAG_GRAPH_EDGES WHERE workspace = :workspace) e
WHERE e.distance>:better_than_threshold ORDER BY e.distance DESC LIMIT :top_k
""",
"chunks": """SELECT c.id FROM
(SELECT chunk_id as id,VEC_COSINE_DISTANCE(content_vector, :embedding_string) as distance
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace = :workspace) c
WHERE c.distance>:better_than_threshold ORDER BY c.distance DESC LIMIT :top_k
""",
"has_entity": """
SELECT COUNT(id) AS cnt FROM LIGHTRAG_GRAPH_NODES WHERE name = :name AND workspace = :workspace
""",
"has_relationship": """
SELECT COUNT(id) AS cnt FROM LIGHTRAG_GRAPH_EDGES WHERE source_name = :source_name AND target_name = :target_name AND workspace = :workspace
""",
"update_entity": """
UPDATE LIGHTRAG_GRAPH_NODES SET
entity_id = :id, content = :content, content_vector = :content_vector, updatetime = CURRENT_TIMESTAMP
WHERE workspace = :workspace AND name = :name
""",
"update_relationship": """
UPDATE LIGHTRAG_GRAPH_EDGES SET
relation_id = :id, content = :content, content_vector = :content_vector, updatetime = CURRENT_TIMESTAMP
WHERE workspace = :workspace AND source_name = :source_name AND target_name = :target_name
""",
"insert_entity": """
INSERT INTO LIGHTRAG_GRAPH_NODES(entity_id, name, content, content_vector, workspace)
VALUES(:id, :name, :content, :content_vector, :workspace)
""",
"insert_relationship": """
INSERT INTO LIGHTRAG_GRAPH_EDGES(relation_id, source_name, target_name, content, content_vector, workspace)
VALUES(:id, :source_name, :target_name, :content, :content_vector, :workspace)
""",
# SQL for GraphStorage
"get_node": """
SELECT entity_id AS id, workspace, name, entity_type, description, source_chunk_id AS source_id, content, content_vector
FROM LIGHTRAG_GRAPH_NODES WHERE name = :name AND workspace = :workspace
""",
"get_edge": """
SELECT relation_id AS id, workspace, source_name, target_name, weight, keywords, description, source_chunk_id AS source_id, content, content_vector
FROM LIGHTRAG_GRAPH_EDGES WHERE source_name = :source_name AND target_name = :target_name AND workspace = :workspace
""",
"get_node_edges": """
SELECT relation_id AS id, workspace, source_name, target_name, weight, keywords, description, source_chunk_id, content, content_vector
FROM LIGHTRAG_GRAPH_EDGES WHERE source_name = :source_name AND workspace = :workspace
""",
"node_degree": """
SELECT COUNT(id) AS cnt FROM LIGHTRAG_GRAPH_EDGES WHERE workspace = :workspace AND :name IN (source_name, target_name)
""",
"upsert_node": """
INSERT INTO LIGHTRAG_GRAPH_NODES(name, content, content_vector, workspace, source_chunk_id, entity_type, description)
VALUES(:name, :content, :content_vector, :workspace, :source_chunk_id, :entity_type, :description)
ON DUPLICATE KEY UPDATE
name = VALUES(name), content = VALUES(content), content_vector = VALUES(content_vector),
workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP,
source_chunk_id = VALUES(source_chunk_id), entity_type = VALUES(entity_type), description = VALUES(description)
""",
"upsert_edge": """
INSERT INTO LIGHTRAG_GRAPH_EDGES(source_name, target_name, content, content_vector,
workspace, weight, keywords, description, source_chunk_id)
VALUES(:source_name, :target_name, :content, :content_vector,
:workspace, :weight, :keywords, :description, :source_chunk_id)
ON DUPLICATE KEY UPDATE
source_name = VALUES(source_name), target_name = VALUES(target_name), content = VALUES(content),
content_vector = VALUES(content_vector), workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP,
weight = VALUES(weight), keywords = VALUES(keywords), description = VALUES(description),
source_chunk_id = VALUES(source_chunk_id)
""",
}