mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-07-25 09:50:20 +00:00
683 lines
27 KiB
Python
683 lines
27 KiB
Python
import asyncio
|
|
import os
|
|
from dataclasses import dataclass
|
|
from typing import Any, Union
|
|
|
|
import numpy as np
|
|
import pipmaster as pm
|
|
|
|
if not pm.is_installed("pymysql"):
|
|
pm.install("pymysql")
|
|
if not pm.is_installed("sqlalchemy"):
|
|
pm.install("sqlalchemy")
|
|
|
|
from sqlalchemy import create_engine, text
|
|
from tqdm import tqdm
|
|
|
|
from ..base import BaseGraphStorage, BaseKVStorage, BaseVectorStorage
|
|
from ..namespace import NameSpace, is_namespace
|
|
from ..utils import logger
|
|
|
|
|
|
class TiDB:
|
|
def __init__(self, config, **kwargs):
|
|
self.host = config.get("host", None)
|
|
self.port = config.get("port", None)
|
|
self.user = config.get("user", None)
|
|
self.password = config.get("password", None)
|
|
self.database = config.get("database", None)
|
|
self.workspace = config.get("workspace", None)
|
|
connection_string = (
|
|
f"mysql+pymysql://{self.user}:{self.password}@{self.host}:{self.port}/{self.database}"
|
|
f"?ssl_verify_cert=true&ssl_verify_identity=true"
|
|
)
|
|
|
|
try:
|
|
self.engine = create_engine(connection_string)
|
|
logger.info(f"Connected to TiDB database at {self.database}")
|
|
except Exception as e:
|
|
logger.error(f"Failed to connect to TiDB database at {self.database}")
|
|
logger.error(f"TiDB database error: {e}")
|
|
raise
|
|
|
|
async def check_tables(self):
|
|
for k, v in TABLES.items():
|
|
try:
|
|
await self.query(f"SELECT 1 FROM {k}".format(k=k))
|
|
except Exception as e:
|
|
logger.error(f"Failed to check table {k} in TiDB database")
|
|
logger.error(f"TiDB database error: {e}")
|
|
try:
|
|
# print(v["ddl"])
|
|
await self.execute(v["ddl"])
|
|
logger.info(f"Created table {k} in TiDB database")
|
|
except Exception as e:
|
|
logger.error(f"Failed to create table {k} in TiDB database")
|
|
logger.error(f"TiDB database error: {e}")
|
|
|
|
async def query(
|
|
self, sql: str, params: dict = None, multirows: bool = False
|
|
) -> Union[dict, None]:
|
|
if params is None:
|
|
params = {"workspace": self.workspace}
|
|
else:
|
|
params.update({"workspace": self.workspace})
|
|
with self.engine.connect() as conn, conn.begin():
|
|
try:
|
|
result = conn.execute(text(sql), params)
|
|
except Exception as e:
|
|
logger.error(f"Tidb database error: {e}")
|
|
print(sql)
|
|
print(params)
|
|
raise
|
|
if multirows:
|
|
rows = result.all()
|
|
if rows:
|
|
data = [dict(zip(result.keys(), row)) for row in rows]
|
|
else:
|
|
data = []
|
|
else:
|
|
row = result.first()
|
|
if row:
|
|
data = dict(zip(result.keys(), row))
|
|
else:
|
|
data = None
|
|
return data
|
|
|
|
async def execute(self, sql: str, data: list | dict = None):
|
|
# logger.info("go into TiDBDB execute method")
|
|
try:
|
|
with self.engine.connect() as conn, conn.begin():
|
|
if data is None:
|
|
conn.execute(text(sql))
|
|
else:
|
|
conn.execute(text(sql), parameters=data)
|
|
except Exception as e:
|
|
logger.error(f"TiDB database error: {e}")
|
|
print(sql)
|
|
print(data)
|
|
raise
|
|
|
|
|
|
@dataclass
|
|
class TiDBKVStorage(BaseKVStorage):
|
|
# db instance must be injected before use
|
|
# db: TiDB
|
|
|
|
def __post_init__(self):
|
|
self._data = {}
|
|
self._max_batch_size = self.global_config["embedding_batch_num"]
|
|
|
|
################ QUERY METHODS ################
|
|
|
|
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
|
|
"""Fetch doc_full data by id."""
|
|
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
|
params = {"id": id}
|
|
response = await self.db.query(SQL, params)
|
|
return response if response else None
|
|
|
|
# Query by id
|
|
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
|
|
"""Fetch doc_chunks data by id"""
|
|
SQL = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
|
|
ids=",".join([f"'{id}'" for id in ids])
|
|
)
|
|
return await self.db.query(SQL, multirows=True)
|
|
|
|
async def filter_keys(self, keys: list[str]) -> set[str]:
|
|
"""过滤掉重复内容"""
|
|
SQL = SQL_TEMPLATES["filter_keys"].format(
|
|
table_name=namespace_to_table_name(self.namespace),
|
|
id_field=namespace_to_id(self.namespace),
|
|
ids=",".join([f"'{id}'" for id in keys]),
|
|
)
|
|
try:
|
|
await self.db.query(SQL)
|
|
except Exception as e:
|
|
logger.error(f"Tidb database error: {e}")
|
|
print(SQL)
|
|
res = await self.db.query(SQL, multirows=True)
|
|
if res:
|
|
exist_keys = [key["id"] for key in res]
|
|
data = set([s for s in keys if s not in exist_keys])
|
|
else:
|
|
exist_keys = []
|
|
data = set([s for s in keys if s not in exist_keys])
|
|
return data
|
|
|
|
################ INSERT full_doc AND chunks ################
|
|
async def upsert(self, data: dict[str, Any]) -> None:
|
|
left_data = {k: v for k, v in data.items() if k not in self._data}
|
|
self._data.update(left_data)
|
|
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
|
list_data = [
|
|
{
|
|
"__id__": k,
|
|
**{k1: v1 for k1, v1 in v.items()},
|
|
}
|
|
for k, v in data.items()
|
|
]
|
|
contents = [v["content"] for v in data.values()]
|
|
batches = [
|
|
contents[i : i + self._max_batch_size]
|
|
for i in range(0, len(contents), self._max_batch_size)
|
|
]
|
|
embeddings_list = await asyncio.gather(
|
|
*[self.embedding_func(batch) for batch in batches]
|
|
)
|
|
embeddings = np.concatenate(embeddings_list)
|
|
for i, d in enumerate(list_data):
|
|
d["__vector__"] = embeddings[i]
|
|
|
|
merge_sql = SQL_TEMPLATES["upsert_chunk"]
|
|
data = []
|
|
for item in list_data:
|
|
data.append(
|
|
{
|
|
"id": item["__id__"],
|
|
"content": item["content"],
|
|
"tokens": item["tokens"],
|
|
"chunk_order_index": item["chunk_order_index"],
|
|
"full_doc_id": item["full_doc_id"],
|
|
"content_vector": f'{item["__vector__"].tolist()}',
|
|
"workspace": self.db.workspace,
|
|
}
|
|
)
|
|
await self.db.execute(merge_sql, data)
|
|
|
|
if is_namespace(self.namespace, NameSpace.KV_STORE_FULL_DOCS):
|
|
merge_sql = SQL_TEMPLATES["upsert_doc_full"]
|
|
data = []
|
|
for k, v in self._data.items():
|
|
data.append(
|
|
{
|
|
"id": k,
|
|
"content": v["content"],
|
|
"workspace": self.db.workspace,
|
|
}
|
|
)
|
|
await self.db.execute(merge_sql, data)
|
|
return left_data
|
|
|
|
async def index_done_callback(self):
|
|
if is_namespace(
|
|
self.namespace,
|
|
(NameSpace.KV_STORE_FULL_DOCS, NameSpace.KV_STORE_TEXT_CHUNKS),
|
|
):
|
|
logger.info("full doc and chunk data had been saved into TiDB db!")
|
|
|
|
|
|
@dataclass
|
|
class TiDBVectorDBStorage(BaseVectorStorage):
|
|
# db instance must be injected before use
|
|
# db: TiDB
|
|
cosine_better_than_threshold: float = None
|
|
|
|
def __post_init__(self):
|
|
self._client_file_name = os.path.join(
|
|
self.global_config["working_dir"], f"vdb_{self.namespace}.json"
|
|
)
|
|
self._max_batch_size = self.global_config["embedding_batch_num"]
|
|
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
|
cosine_threshold = config.get("cosine_better_than_threshold")
|
|
if cosine_threshold is None:
|
|
raise ValueError(
|
|
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
|
|
)
|
|
self.cosine_better_than_threshold = cosine_threshold
|
|
|
|
async def query(self, query: str, top_k: int) -> list[dict]:
|
|
"""Search from tidb vector"""
|
|
embeddings = await self.embedding_func([query])
|
|
embedding = embeddings[0]
|
|
|
|
embedding_string = "[" + ", ".join(map(str, embedding.tolist())) + "]"
|
|
|
|
params = {
|
|
"embedding_string": embedding_string,
|
|
"top_k": top_k,
|
|
"better_than_threshold": self.cosine_better_than_threshold,
|
|
}
|
|
|
|
results = await self.db.query(
|
|
SQL_TEMPLATES[self.namespace], params=params, multirows=True
|
|
)
|
|
print("vector search result:", results)
|
|
if not results:
|
|
return []
|
|
return results
|
|
|
|
###### INSERT entities And relationships ######
|
|
async def upsert(self, data: dict[str, dict]):
|
|
# ignore, upsert in TiDBKVStorage already
|
|
if not len(data):
|
|
logger.warning("You insert an empty data to vector DB")
|
|
return []
|
|
if is_namespace(self.namespace, NameSpace.VECTOR_STORE_CHUNKS):
|
|
return []
|
|
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
|
|
|
list_data = [
|
|
{
|
|
"id": k,
|
|
**{k1: v1 for k1, v1 in v.items()},
|
|
}
|
|
for k, v in data.items()
|
|
]
|
|
contents = [v["content"] for v in data.values()]
|
|
batches = [
|
|
contents[i : i + self._max_batch_size]
|
|
for i in range(0, len(contents), self._max_batch_size)
|
|
]
|
|
embedding_tasks = [self.embedding_func(batch) for batch in batches]
|
|
embeddings_list = []
|
|
for f in tqdm(
|
|
asyncio.as_completed(embedding_tasks),
|
|
total=len(embedding_tasks),
|
|
desc="Generating embeddings",
|
|
unit="batch",
|
|
):
|
|
embeddings = await f
|
|
embeddings_list.append(embeddings)
|
|
embeddings = np.concatenate(embeddings_list)
|
|
for i, d in enumerate(list_data):
|
|
d["content_vector"] = embeddings[i]
|
|
|
|
if is_namespace(self.namespace, NameSpace.VECTOR_STORE_ENTITIES):
|
|
data = []
|
|
for item in list_data:
|
|
param = {
|
|
"id": item["id"],
|
|
"name": item["entity_name"],
|
|
"content": item["content"],
|
|
"content_vector": f'{item["content_vector"].tolist()}',
|
|
"workspace": self.db.workspace,
|
|
}
|
|
# update entity_id if node inserted by graph_storage_instance before
|
|
has = await self.db.query(SQL_TEMPLATES["has_entity"], param)
|
|
if has["cnt"] != 0:
|
|
await self.db.execute(SQL_TEMPLATES["update_entity"], param)
|
|
continue
|
|
|
|
data.append(param)
|
|
if data:
|
|
merge_sql = SQL_TEMPLATES["insert_entity"]
|
|
await self.db.execute(merge_sql, data)
|
|
|
|
elif is_namespace(self.namespace, NameSpace.VECTOR_STORE_RELATIONSHIPS):
|
|
data = []
|
|
for item in list_data:
|
|
param = {
|
|
"id": item["id"],
|
|
"source_name": item["src_id"],
|
|
"target_name": item["tgt_id"],
|
|
"content": item["content"],
|
|
"content_vector": f'{item["content_vector"].tolist()}',
|
|
"workspace": self.db.workspace,
|
|
}
|
|
# update relation_id if node inserted by graph_storage_instance before
|
|
has = await self.db.query(SQL_TEMPLATES["has_relationship"], param)
|
|
if has["cnt"] != 0:
|
|
await self.db.execute(SQL_TEMPLATES["update_relationship"], param)
|
|
continue
|
|
|
|
data.append(param)
|
|
if data:
|
|
merge_sql = SQL_TEMPLATES["insert_relationship"]
|
|
await self.db.execute(merge_sql, data)
|
|
|
|
async def get_by_status(self, status: str) -> Union[list[dict[str, Any]], None]:
|
|
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
|
|
params = {"workspace": self.db.workspace, "status": status}
|
|
return await self.db.query(SQL, params, multirows=True)
|
|
|
|
|
|
@dataclass
|
|
class TiDBGraphStorage(BaseGraphStorage):
|
|
# db instance must be injected before use
|
|
# db: TiDB
|
|
|
|
def __post_init__(self):
|
|
self._max_batch_size = self.global_config["embedding_batch_num"]
|
|
|
|
#################### upsert method ################
|
|
async def upsert_node(self, node_id: str, node_data: dict[str, str]):
|
|
entity_name = node_id
|
|
entity_type = node_data["entity_type"]
|
|
description = node_data["description"]
|
|
source_id = node_data["source_id"]
|
|
logger.debug(f"entity_name:{entity_name}, entity_type:{entity_type}")
|
|
content = entity_name + description
|
|
contents = [content]
|
|
batches = [
|
|
contents[i : i + self._max_batch_size]
|
|
for i in range(0, len(contents), self._max_batch_size)
|
|
]
|
|
embeddings_list = await asyncio.gather(
|
|
*[self.embedding_func(batch) for batch in batches]
|
|
)
|
|
embeddings = np.concatenate(embeddings_list)
|
|
content_vector = embeddings[0]
|
|
sql = SQL_TEMPLATES["upsert_node"]
|
|
data = {
|
|
"workspace": self.db.workspace,
|
|
"name": entity_name,
|
|
"entity_type": entity_type,
|
|
"description": description,
|
|
"source_chunk_id": source_id,
|
|
"content": content,
|
|
"content_vector": f"{content_vector.tolist()}",
|
|
}
|
|
await self.db.execute(sql, data)
|
|
|
|
async def upsert_edge(
|
|
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
|
|
):
|
|
source_name = source_node_id
|
|
target_name = target_node_id
|
|
weight = edge_data["weight"]
|
|
keywords = edge_data["keywords"]
|
|
description = edge_data["description"]
|
|
source_chunk_id = edge_data["source_id"]
|
|
logger.debug(
|
|
f"source_name:{source_name}, target_name:{target_name}, keywords: {keywords}"
|
|
)
|
|
|
|
content = keywords + source_name + target_name + description
|
|
contents = [content]
|
|
batches = [
|
|
contents[i : i + self._max_batch_size]
|
|
for i in range(0, len(contents), self._max_batch_size)
|
|
]
|
|
embeddings_list = await asyncio.gather(
|
|
*[self.embedding_func(batch) for batch in batches]
|
|
)
|
|
embeddings = np.concatenate(embeddings_list)
|
|
content_vector = embeddings[0]
|
|
merge_sql = SQL_TEMPLATES["upsert_edge"]
|
|
data = {
|
|
"workspace": self.db.workspace,
|
|
"source_name": source_name,
|
|
"target_name": target_name,
|
|
"weight": weight,
|
|
"keywords": keywords,
|
|
"description": description,
|
|
"source_chunk_id": source_chunk_id,
|
|
"content": content,
|
|
"content_vector": f"{content_vector.tolist()}",
|
|
}
|
|
await self.db.execute(merge_sql, data)
|
|
|
|
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]:
|
|
if algorithm not in self._node_embed_algorithms:
|
|
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
|
|
return await self._node_embed_algorithms[algorithm]()
|
|
|
|
# Query
|
|
|
|
async def has_node(self, node_id: str) -> bool:
|
|
sql = SQL_TEMPLATES["has_entity"]
|
|
param = {"name": node_id, "workspace": self.db.workspace}
|
|
has = await self.db.query(sql, param)
|
|
return has["cnt"] != 0
|
|
|
|
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
|
sql = SQL_TEMPLATES["has_relationship"]
|
|
param = {
|
|
"source_name": source_node_id,
|
|
"target_name": target_node_id,
|
|
"workspace": self.db.workspace,
|
|
}
|
|
has = await self.db.query(sql, param)
|
|
return has["cnt"] != 0
|
|
|
|
async def node_degree(self, node_id: str) -> int:
|
|
sql = SQL_TEMPLATES["node_degree"]
|
|
param = {"name": node_id, "workspace": self.db.workspace}
|
|
result = await self.db.query(sql, param)
|
|
return result["cnt"]
|
|
|
|
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
|
degree = await self.node_degree(src_id) + await self.node_degree(tgt_id)
|
|
return degree
|
|
|
|
async def get_node(self, node_id: str) -> Union[dict, None]:
|
|
sql = SQL_TEMPLATES["get_node"]
|
|
param = {"name": node_id, "workspace": self.db.workspace}
|
|
return await self.db.query(sql, param)
|
|
|
|
async def get_edge(
|
|
self, source_node_id: str, target_node_id: str
|
|
) -> Union[dict, None]:
|
|
sql = SQL_TEMPLATES["get_edge"]
|
|
param = {
|
|
"source_name": source_node_id,
|
|
"target_name": target_node_id,
|
|
"workspace": self.db.workspace,
|
|
}
|
|
return await self.db.query(sql, param)
|
|
|
|
async def get_node_edges(
|
|
self, source_node_id: str
|
|
) -> Union[list[tuple[str, str]], None]:
|
|
sql = SQL_TEMPLATES["get_node_edges"]
|
|
param = {"source_name": source_node_id, "workspace": self.db.workspace}
|
|
res = await self.db.query(sql, param, multirows=True)
|
|
if res:
|
|
data = [(i["source_name"], i["target_name"]) for i in res]
|
|
return data
|
|
else:
|
|
return []
|
|
|
|
|
|
N_T = {
|
|
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
|
|
NameSpace.KV_STORE_TEXT_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
|
NameSpace.VECTOR_STORE_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
|
NameSpace.VECTOR_STORE_ENTITIES: "LIGHTRAG_GRAPH_NODES",
|
|
NameSpace.VECTOR_STORE_RELATIONSHIPS: "LIGHTRAG_GRAPH_EDGES",
|
|
}
|
|
N_ID = {
|
|
NameSpace.KV_STORE_FULL_DOCS: "doc_id",
|
|
NameSpace.KV_STORE_TEXT_CHUNKS: "chunk_id",
|
|
NameSpace.VECTOR_STORE_CHUNKS: "chunk_id",
|
|
NameSpace.VECTOR_STORE_ENTITIES: "entity_id",
|
|
NameSpace.VECTOR_STORE_RELATIONSHIPS: "relation_id",
|
|
}
|
|
|
|
|
|
def namespace_to_table_name(namespace: str) -> str:
|
|
for k, v in N_T.items():
|
|
if is_namespace(namespace, k):
|
|
return v
|
|
|
|
|
|
def namespace_to_id(namespace: str) -> str:
|
|
for k, v in N_ID.items():
|
|
if is_namespace(namespace, k):
|
|
return v
|
|
|
|
|
|
TABLES = {
|
|
"LIGHTRAG_DOC_FULL": {
|
|
"ddl": """
|
|
CREATE TABLE LIGHTRAG_DOC_FULL (
|
|
`id` BIGINT PRIMARY KEY AUTO_RANDOM,
|
|
`doc_id` VARCHAR(256) NOT NULL,
|
|
`workspace` varchar(1024),
|
|
`content` LONGTEXT,
|
|
`meta` JSON,
|
|
`createtime` TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
|
`updatetime` TIMESTAMP DEFAULT NULL,
|
|
UNIQUE KEY (`doc_id`)
|
|
);
|
|
"""
|
|
},
|
|
"LIGHTRAG_DOC_CHUNKS": {
|
|
"ddl": """
|
|
CREATE TABLE LIGHTRAG_DOC_CHUNKS (
|
|
`id` BIGINT PRIMARY KEY AUTO_RANDOM,
|
|
`chunk_id` VARCHAR(256) NOT NULL,
|
|
`full_doc_id` VARCHAR(256) NOT NULL,
|
|
`workspace` varchar(1024),
|
|
`chunk_order_index` INT,
|
|
`tokens` INT,
|
|
`content` LONGTEXT,
|
|
`content_vector` VECTOR,
|
|
`createtime` DATETIME DEFAULT CURRENT_TIMESTAMP,
|
|
`updatetime` DATETIME DEFAULT NULL,
|
|
UNIQUE KEY (`chunk_id`)
|
|
);
|
|
"""
|
|
},
|
|
"LIGHTRAG_GRAPH_NODES": {
|
|
"ddl": """
|
|
CREATE TABLE LIGHTRAG_GRAPH_NODES (
|
|
`id` BIGINT PRIMARY KEY AUTO_RANDOM,
|
|
`entity_id` VARCHAR(256),
|
|
`workspace` varchar(1024),
|
|
`name` VARCHAR(2048),
|
|
`entity_type` VARCHAR(1024),
|
|
`description` LONGTEXT,
|
|
`source_chunk_id` VARCHAR(256),
|
|
`content` LONGTEXT,
|
|
`content_vector` VECTOR,
|
|
`createtime` DATETIME DEFAULT CURRENT_TIMESTAMP,
|
|
`updatetime` DATETIME DEFAULT NULL,
|
|
KEY (`entity_id`)
|
|
);
|
|
"""
|
|
},
|
|
"LIGHTRAG_GRAPH_EDGES": {
|
|
"ddl": """
|
|
CREATE TABLE LIGHTRAG_GRAPH_EDGES (
|
|
`id` BIGINT PRIMARY KEY AUTO_RANDOM,
|
|
`relation_id` VARCHAR(256),
|
|
`workspace` varchar(1024),
|
|
`source_name` VARCHAR(2048),
|
|
`target_name` VARCHAR(2048),
|
|
`weight` DECIMAL,
|
|
`keywords` TEXT,
|
|
`description` LONGTEXT,
|
|
`source_chunk_id` varchar(256),
|
|
`content` LONGTEXT,
|
|
`content_vector` VECTOR,
|
|
`createtime` DATETIME DEFAULT CURRENT_TIMESTAMP,
|
|
`updatetime` DATETIME DEFAULT NULL,
|
|
KEY (`relation_id`)
|
|
);
|
|
"""
|
|
},
|
|
"LIGHTRAG_LLM_CACHE": {
|
|
"ddl": """
|
|
CREATE TABLE LIGHTRAG_LLM_CACHE (
|
|
id BIGINT PRIMARY KEY AUTO_INCREMENT,
|
|
send TEXT,
|
|
return TEXT,
|
|
model VARCHAR(1024),
|
|
createtime DATETIME DEFAULT CURRENT_TIMESTAMP,
|
|
updatetime DATETIME DEFAULT NULL
|
|
);
|
|
"""
|
|
},
|
|
}
|
|
|
|
|
|
SQL_TEMPLATES = {
|
|
# SQL for KVStorage
|
|
"get_by_id_full_docs": "SELECT doc_id as id, IFNULL(content, '') AS content FROM LIGHTRAG_DOC_FULL WHERE doc_id = :id AND workspace = :workspace",
|
|
"get_by_id_text_chunks": "SELECT chunk_id as id, tokens, IFNULL(content, '') AS content, chunk_order_index, full_doc_id FROM LIGHTRAG_DOC_CHUNKS WHERE chunk_id = :id AND workspace = :workspace",
|
|
"get_by_ids_full_docs": "SELECT doc_id as id, IFNULL(content, '') AS content FROM LIGHTRAG_DOC_FULL WHERE doc_id IN ({ids}) AND workspace = :workspace",
|
|
"get_by_ids_text_chunks": "SELECT chunk_id as id, tokens, IFNULL(content, '') AS content, chunk_order_index, full_doc_id FROM LIGHTRAG_DOC_CHUNKS WHERE chunk_id IN ({ids}) AND workspace = :workspace",
|
|
"filter_keys": "SELECT {id_field} AS id FROM {table_name} WHERE {id_field} IN ({ids}) AND workspace = :workspace",
|
|
# SQL for Merge operations (TiDB version with INSERT ... ON DUPLICATE KEY UPDATE)
|
|
"upsert_doc_full": """
|
|
INSERT INTO LIGHTRAG_DOC_FULL (doc_id, content, workspace)
|
|
VALUES (:id, :content, :workspace)
|
|
ON DUPLICATE KEY UPDATE content = VALUES(content), workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP
|
|
""",
|
|
"upsert_chunk": """
|
|
INSERT INTO LIGHTRAG_DOC_CHUNKS(chunk_id, content, tokens, chunk_order_index, full_doc_id, content_vector, workspace)
|
|
VALUES (:id, :content, :tokens, :chunk_order_index, :full_doc_id, :content_vector, :workspace)
|
|
ON DUPLICATE KEY UPDATE
|
|
content = VALUES(content), tokens = VALUES(tokens), chunk_order_index = VALUES(chunk_order_index),
|
|
full_doc_id = VALUES(full_doc_id), content_vector = VALUES(content_vector), workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP
|
|
""",
|
|
# SQL for VectorStorage
|
|
"entities": """SELECT n.name as entity_name FROM
|
|
(SELECT entity_id as id, name, VEC_COSINE_DISTANCE(content_vector,:embedding_string) as distance
|
|
FROM LIGHTRAG_GRAPH_NODES WHERE workspace = :workspace) n
|
|
WHERE n.distance>:better_than_threshold ORDER BY n.distance DESC LIMIT :top_k
|
|
""",
|
|
"relationships": """SELECT e.source_name as src_id, e.target_name as tgt_id FROM
|
|
(SELECT source_name, target_name, VEC_COSINE_DISTANCE(content_vector, :embedding_string) as distance
|
|
FROM LIGHTRAG_GRAPH_EDGES WHERE workspace = :workspace) e
|
|
WHERE e.distance>:better_than_threshold ORDER BY e.distance DESC LIMIT :top_k
|
|
""",
|
|
"chunks": """SELECT c.id FROM
|
|
(SELECT chunk_id as id,VEC_COSINE_DISTANCE(content_vector, :embedding_string) as distance
|
|
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace = :workspace) c
|
|
WHERE c.distance>:better_than_threshold ORDER BY c.distance DESC LIMIT :top_k
|
|
""",
|
|
"has_entity": """
|
|
SELECT COUNT(id) AS cnt FROM LIGHTRAG_GRAPH_NODES WHERE name = :name AND workspace = :workspace
|
|
""",
|
|
"has_relationship": """
|
|
SELECT COUNT(id) AS cnt FROM LIGHTRAG_GRAPH_EDGES WHERE source_name = :source_name AND target_name = :target_name AND workspace = :workspace
|
|
""",
|
|
"update_entity": """
|
|
UPDATE LIGHTRAG_GRAPH_NODES SET
|
|
entity_id = :id, content = :content, content_vector = :content_vector, updatetime = CURRENT_TIMESTAMP
|
|
WHERE workspace = :workspace AND name = :name
|
|
""",
|
|
"update_relationship": """
|
|
UPDATE LIGHTRAG_GRAPH_EDGES SET
|
|
relation_id = :id, content = :content, content_vector = :content_vector, updatetime = CURRENT_TIMESTAMP
|
|
WHERE workspace = :workspace AND source_name = :source_name AND target_name = :target_name
|
|
""",
|
|
"insert_entity": """
|
|
INSERT INTO LIGHTRAG_GRAPH_NODES(entity_id, name, content, content_vector, workspace)
|
|
VALUES(:id, :name, :content, :content_vector, :workspace)
|
|
""",
|
|
"insert_relationship": """
|
|
INSERT INTO LIGHTRAG_GRAPH_EDGES(relation_id, source_name, target_name, content, content_vector, workspace)
|
|
VALUES(:id, :source_name, :target_name, :content, :content_vector, :workspace)
|
|
""",
|
|
# SQL for GraphStorage
|
|
"get_node": """
|
|
SELECT entity_id AS id, workspace, name, entity_type, description, source_chunk_id AS source_id, content, content_vector
|
|
FROM LIGHTRAG_GRAPH_NODES WHERE name = :name AND workspace = :workspace
|
|
""",
|
|
"get_edge": """
|
|
SELECT relation_id AS id, workspace, source_name, target_name, weight, keywords, description, source_chunk_id AS source_id, content, content_vector
|
|
FROM LIGHTRAG_GRAPH_EDGES WHERE source_name = :source_name AND target_name = :target_name AND workspace = :workspace
|
|
""",
|
|
"get_node_edges": """
|
|
SELECT relation_id AS id, workspace, source_name, target_name, weight, keywords, description, source_chunk_id, content, content_vector
|
|
FROM LIGHTRAG_GRAPH_EDGES WHERE source_name = :source_name AND workspace = :workspace
|
|
""",
|
|
"node_degree": """
|
|
SELECT COUNT(id) AS cnt FROM LIGHTRAG_GRAPH_EDGES WHERE workspace = :workspace AND :name IN (source_name, target_name)
|
|
""",
|
|
"upsert_node": """
|
|
INSERT INTO LIGHTRAG_GRAPH_NODES(name, content, content_vector, workspace, source_chunk_id, entity_type, description)
|
|
VALUES(:name, :content, :content_vector, :workspace, :source_chunk_id, :entity_type, :description)
|
|
ON DUPLICATE KEY UPDATE
|
|
name = VALUES(name), content = VALUES(content), content_vector = VALUES(content_vector),
|
|
workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP,
|
|
source_chunk_id = VALUES(source_chunk_id), entity_type = VALUES(entity_type), description = VALUES(description)
|
|
""",
|
|
"upsert_edge": """
|
|
INSERT INTO LIGHTRAG_GRAPH_EDGES(source_name, target_name, content, content_vector,
|
|
workspace, weight, keywords, description, source_chunk_id)
|
|
VALUES(:source_name, :target_name, :content, :content_vector,
|
|
:workspace, :weight, :keywords, :description, :source_chunk_id)
|
|
ON DUPLICATE KEY UPDATE
|
|
source_name = VALUES(source_name), target_name = VALUES(target_name), content = VALUES(content),
|
|
content_vector = VALUES(content_vector), workspace = VALUES(workspace), updatetime = CURRENT_TIMESTAMP,
|
|
weight = VALUES(weight), keywords = VALUES(keywords), description = VALUES(description),
|
|
source_chunk_id = VALUES(source_chunk_id)
|
|
""",
|
|
}
|