mirror of
				https://github.com/HKUDS/LightRAG.git
				synced 2025-10-31 09:49:54 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			146 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			146 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| from lightrag import LightRAG, QueryParam
 | |
| from lightrag.llm.llama_index_impl import (
 | |
|     llama_index_complete_if_cache,
 | |
|     llama_index_embed,
 | |
| )
 | |
| from lightrag.utils import EmbeddingFunc
 | |
| from llama_index.llms.litellm import LiteLLM
 | |
| from llama_index.embeddings.litellm import LiteLLMEmbedding
 | |
| import asyncio
 | |
| import nest_asyncio
 | |
| 
 | |
| nest_asyncio.apply()
 | |
| 
 | |
| from lightrag.kg.shared_storage import initialize_pipeline_status
 | |
| 
 | |
| # Configure working directory
 | |
| WORKING_DIR = "./index_default"
 | |
| print(f"WORKING_DIR: {WORKING_DIR}")
 | |
| 
 | |
| # Model configuration
 | |
| LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4")
 | |
| print(f"LLM_MODEL: {LLM_MODEL}")
 | |
| EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
 | |
| print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
 | |
| EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
 | |
| print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
 | |
| 
 | |
| # LiteLLM configuration
 | |
| LITELLM_URL = os.environ.get("LITELLM_URL", "http://localhost:4000")
 | |
| print(f"LITELLM_URL: {LITELLM_URL}")
 | |
| LITELLM_KEY = os.environ.get("LITELLM_KEY", "sk-1234")
 | |
| 
 | |
| if not os.path.exists(WORKING_DIR):
 | |
|     os.mkdir(WORKING_DIR)
 | |
| 
 | |
| 
 | |
| # Initialize LLM function
 | |
| async def llm_model_func(prompt, system_prompt=None, history_messages=[], **kwargs):
 | |
|     try:
 | |
|         # Initialize LiteLLM if not in kwargs
 | |
|         if "llm_instance" not in kwargs:
 | |
|             llm_instance = LiteLLM(
 | |
|                 model=f"openai/{LLM_MODEL}",  # Format: "provider/model_name"
 | |
|                 api_base=LITELLM_URL,
 | |
|                 api_key=LITELLM_KEY,
 | |
|                 temperature=0.7,
 | |
|             )
 | |
|             kwargs["llm_instance"] = llm_instance
 | |
| 
 | |
|         response = await llama_index_complete_if_cache(
 | |
|             kwargs["llm_instance"],
 | |
|             prompt,
 | |
|             system_prompt=system_prompt,
 | |
|             history_messages=history_messages,
 | |
|             **kwargs,
 | |
|         )
 | |
|         return response
 | |
|     except Exception as e:
 | |
|         print(f"LLM request failed: {str(e)}")
 | |
|         raise
 | |
| 
 | |
| 
 | |
| # Initialize embedding function
 | |
| async def embedding_func(texts):
 | |
|     try:
 | |
|         embed_model = LiteLLMEmbedding(
 | |
|             model_name=f"openai/{EMBEDDING_MODEL}",
 | |
|             api_base=LITELLM_URL,
 | |
|             api_key=LITELLM_KEY,
 | |
|         )
 | |
|         return await llama_index_embed(texts, embed_model=embed_model)
 | |
|     except Exception as e:
 | |
|         print(f"Embedding failed: {str(e)}")
 | |
|         raise
 | |
| 
 | |
| 
 | |
| # Get embedding dimension
 | |
| async def get_embedding_dim():
 | |
|     test_text = ["This is a test sentence."]
 | |
|     embedding = await embedding_func(test_text)
 | |
|     embedding_dim = embedding.shape[1]
 | |
|     print(f"embedding_dim={embedding_dim}")
 | |
|     return embedding_dim
 | |
| 
 | |
| 
 | |
| async def initialize_rag():
 | |
|     embedding_dimension = await get_embedding_dim()
 | |
| 
 | |
|     rag = LightRAG(
 | |
|         working_dir=WORKING_DIR,
 | |
|         llm_model_func=llm_model_func,
 | |
|         embedding_func=EmbeddingFunc(
 | |
|             embedding_dim=embedding_dimension,
 | |
|             max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
 | |
|             func=embedding_func,
 | |
|         ),
 | |
|     )
 | |
| 
 | |
|     await rag.initialize_storages()
 | |
|     await initialize_pipeline_status()
 | |
| 
 | |
|     return rag
 | |
| 
 | |
| 
 | |
| def main():
 | |
|     # Initialize RAG instance
 | |
|     rag = asyncio.run(initialize_rag())
 | |
| 
 | |
|     # Insert example text
 | |
|     with open("./book.txt", "r", encoding="utf-8") as f:
 | |
|         rag.insert(f.read())
 | |
| 
 | |
|     # Test different query modes
 | |
|     print("\nNaive Search:")
 | |
|     print(
 | |
|         rag.query(
 | |
|             "What are the top themes in this story?", param=QueryParam(mode="naive")
 | |
|         )
 | |
|     )
 | |
| 
 | |
|     print("\nLocal Search:")
 | |
|     print(
 | |
|         rag.query(
 | |
|             "What are the top themes in this story?", param=QueryParam(mode="local")
 | |
|         )
 | |
|     )
 | |
| 
 | |
|     print("\nGlobal Search:")
 | |
|     print(
 | |
|         rag.query(
 | |
|             "What are the top themes in this story?", param=QueryParam(mode="global")
 | |
|         )
 | |
|     )
 | |
| 
 | |
|     print("\nHybrid Search:")
 | |
|     print(
 | |
|         rag.query(
 | |
|             "What are the top themes in this story?", param=QueryParam(mode="hybrid")
 | |
|         )
 | |
|     )
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     main()
 | 
