LightRAG/examples/lightrag_ollama_age_demo.py
2025-03-03 18:40:03 +08:00

114 lines
2.7 KiB
Python

import asyncio
import nest_asyncio
nest_asyncio.apply()
import inspect
import logging
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
from lightrag.utils import EmbeddingFunc
from lightrag.kg.shared_storage import initialize_pipeline_status
WORKING_DIR = "./dickens_age"
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
# AGE
os.environ["AGE_POSTGRES_DB"] = "postgresDB"
os.environ["AGE_POSTGRES_USER"] = "postgresUser"
os.environ["AGE_POSTGRES_PASSWORD"] = "postgresPW"
os.environ["AGE_POSTGRES_HOST"] = "localhost"
os.environ["AGE_POSTGRES_PORT"] = "5455"
os.environ["AGE_GRAPH_NAME"] = "dickens"
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=ollama_model_complete,
llm_model_name="llama3.1:8b",
llm_model_max_async=4,
llm_model_max_token_size=32768,
llm_model_kwargs={
"host": "http://localhost:11434",
"options": {"num_ctx": 32768},
},
embedding_func=EmbeddingFunc(
embedding_dim=768,
max_token_size=8192,
func=lambda texts: ollama_embed(
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
),
),
graph_storage="AGEStorage",
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
async def print_stream(stream):
async for chunk in stream:
print(chunk, end="", flush=True)
def main():
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
# Insert example text
with open("./book.txt", "r", encoding="utf-8") as f:
rag.insert(f.read())
# Test different query modes
print("\nNaive Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="naive")
)
)
print("\nLocal Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="local")
)
)
print("\nGlobal Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="global")
)
)
print("\nHybrid Search:")
print(
rag.query(
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
)
)
# stream response
resp = rag.query(
"What are the top themes in this story?",
param=QueryParam(mode="hybrid", stream=True),
)
if inspect.isasyncgen(resp):
asyncio.run(print_stream(resp))
else:
print(resp)
if __name__ == "__main__":
main()