mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
114 lines
2.7 KiB
Python
114 lines
2.7 KiB
Python
import asyncio
|
|
import nest_asyncio
|
|
|
|
nest_asyncio.apply()
|
|
|
|
import inspect
|
|
import logging
|
|
import os
|
|
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
|
from lightrag.utils import EmbeddingFunc
|
|
from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
|
|
WORKING_DIR = "./dickens_age"
|
|
|
|
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
|
|
|
if not os.path.exists(WORKING_DIR):
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
# AGE
|
|
os.environ["AGE_POSTGRES_DB"] = "postgresDB"
|
|
os.environ["AGE_POSTGRES_USER"] = "postgresUser"
|
|
os.environ["AGE_POSTGRES_PASSWORD"] = "postgresPW"
|
|
os.environ["AGE_POSTGRES_HOST"] = "localhost"
|
|
os.environ["AGE_POSTGRES_PORT"] = "5455"
|
|
os.environ["AGE_GRAPH_NAME"] = "dickens"
|
|
|
|
|
|
async def initialize_rag():
|
|
rag = LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
llm_model_func=ollama_model_complete,
|
|
llm_model_name="llama3.1:8b",
|
|
llm_model_max_async=4,
|
|
llm_model_max_token_size=32768,
|
|
llm_model_kwargs={
|
|
"host": "http://localhost:11434",
|
|
"options": {"num_ctx": 32768},
|
|
},
|
|
embedding_func=EmbeddingFunc(
|
|
embedding_dim=768,
|
|
max_token_size=8192,
|
|
func=lambda texts: ollama_embed(
|
|
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
|
),
|
|
),
|
|
graph_storage="AGEStorage",
|
|
)
|
|
|
|
await rag.initialize_storages()
|
|
await initialize_pipeline_status()
|
|
|
|
return rag
|
|
|
|
|
|
async def print_stream(stream):
|
|
async for chunk in stream:
|
|
print(chunk, end="", flush=True)
|
|
|
|
|
|
def main():
|
|
# Initialize RAG instance
|
|
rag = asyncio.run(initialize_rag())
|
|
|
|
# Insert example text
|
|
with open("./book.txt", "r", encoding="utf-8") as f:
|
|
rag.insert(f.read())
|
|
|
|
# Test different query modes
|
|
print("\nNaive Search:")
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
|
)
|
|
)
|
|
|
|
print("\nLocal Search:")
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="local")
|
|
)
|
|
)
|
|
|
|
print("\nGlobal Search:")
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="global")
|
|
)
|
|
)
|
|
|
|
print("\nHybrid Search:")
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
|
)
|
|
)
|
|
|
|
# stream response
|
|
resp = rag.query(
|
|
"What are the top themes in this story?",
|
|
param=QueryParam(mode="hybrid", stream=True),
|
|
)
|
|
|
|
if inspect.isasyncgen(resp):
|
|
asyncio.run(print_stream(resp))
|
|
else:
|
|
print(resp)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|