mirror of
https://github.com/HKUDS/LightRAG.git
synced 2025-06-26 22:00:19 +00:00
65 lines
1.4 KiB
Python
65 lines
1.4 KiB
Python
import os
|
|
import asyncio
|
|
from lightrag import LightRAG, QueryParam
|
|
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
|
|
from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
|
|
WORKING_DIR = "./dickens"
|
|
|
|
if not os.path.exists(WORKING_DIR):
|
|
os.mkdir(WORKING_DIR)
|
|
|
|
|
|
async def initialize_rag():
|
|
rag = LightRAG(
|
|
working_dir=WORKING_DIR,
|
|
embedding_func=openai_embed,
|
|
llm_model_func=gpt_4o_mini_complete,
|
|
# llm_model_func=gpt_4o_complete
|
|
)
|
|
|
|
await rag.initialize_storages()
|
|
await initialize_pipeline_status()
|
|
|
|
return rag
|
|
|
|
|
|
def main():
|
|
# Initialize RAG instance
|
|
rag = asyncio.run(initialize_rag())
|
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f:
|
|
rag.insert(f.read())
|
|
|
|
# Perform naive search
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
|
)
|
|
)
|
|
|
|
# Perform local search
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="local")
|
|
)
|
|
)
|
|
|
|
# Perform global search
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="global")
|
|
)
|
|
)
|
|
|
|
# Perform hybrid search
|
|
print(
|
|
rag.query(
|
|
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
|
)
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|