LightRAG/lightrag/kg/chroma_impl.py
2025-03-11 20:53:00 +05:30

338 lines
12 KiB
Python

import asyncio
from dataclasses import dataclass
from typing import Any, final
import numpy as np
from lightrag.base import BaseVectorStorage
from lightrag.utils import logger
import pipmaster as pm
if not pm.is_installed("chromadb"):
pm.install("chromadb")
from chromadb import HttpClient, PersistentClient
from chromadb.config import Settings
@final
@dataclass
class ChromaVectorDBStorage(BaseVectorStorage):
"""ChromaDB vector storage implementation."""
def __post_init__(self):
try:
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
cosine_threshold = config.get("cosine_better_than_threshold")
if cosine_threshold is None:
raise ValueError(
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
)
self.cosine_better_than_threshold = cosine_threshold
user_collection_settings = config.get("collection_settings", {})
# Default HNSW index settings for ChromaDB
default_collection_settings = {
# Distance metric used for similarity search (cosine similarity)
"hnsw:space": "cosine",
# Number of nearest neighbors to explore during index construction
# Higher values = better recall but slower indexing
"hnsw:construction_ef": 128,
# Number of nearest neighbors to explore during search
# Higher values = better recall but slower search
"hnsw:search_ef": 128,
# Number of connections per node in the HNSW graph
# Higher values = better recall but more memory usage
"hnsw:M": 16,
# Number of vectors to process in one batch during indexing
"hnsw:batch_size": 100,
# Number of updates before forcing index synchronization
# Lower values = more frequent syncs but slower indexing
"hnsw:sync_threshold": 1000,
}
collection_settings = {
**default_collection_settings,
**user_collection_settings,
}
local_path = config.get("local_path", None)
if local_path:
self._client = PersistentClient(
path=local_path,
settings=Settings(
allow_reset=True,
anonymized_telemetry=False,
),
)
else:
auth_provider = config.get(
"auth_provider", "chromadb.auth.token_authn.TokenAuthClientProvider"
)
auth_credentials = config.get("auth_token", "secret-token")
headers = {}
if "token_authn" in auth_provider:
headers = {
config.get(
"auth_header_name", "X-Chroma-Token"
): auth_credentials
}
elif "basic_authn" in auth_provider:
auth_credentials = config.get("auth_credentials", "admin:admin")
self._client = HttpClient(
host=config.get("host", "localhost"),
port=config.get("port", 8000),
headers=headers,
settings=Settings(
chroma_api_impl="rest",
chroma_client_auth_provider=auth_provider,
chroma_client_auth_credentials=auth_credentials,
allow_reset=True,
anonymized_telemetry=False,
),
)
self._collection = self._client.get_or_create_collection(
name=self.namespace,
metadata={
**collection_settings,
"dimension": self.embedding_func.embedding_dim,
},
)
# Use batch size from collection settings if specified
self._max_batch_size = self.global_config.get(
"embedding_batch_num", collection_settings.get("hnsw:batch_size", 32)
)
except Exception as e:
logger.error(f"ChromaDB initialization failed: {str(e)}")
raise
async def upsert(self, data: dict[str, dict[str, Any]]) -> None:
logger.info(f"Inserting {len(data)} to {self.namespace}")
if not data:
return
try:
ids = list(data.keys())
documents = [v["content"] for v in data.values()]
metadatas = [
{k: v for k, v in item.items() if k in self.meta_fields}
or {"_default": "true"}
for item in data.values()
]
# Process in batches
batches = [
documents[i : i + self._max_batch_size]
for i in range(0, len(documents), self._max_batch_size)
]
embedding_tasks = [self.embedding_func(batch) for batch in batches]
embeddings_list = []
# Pre-allocate embeddings_list with known size
embeddings_list = [None] * len(embedding_tasks)
# Use asyncio.gather instead of as_completed if order doesn't matter
embeddings_results = await asyncio.gather(*embedding_tasks)
embeddings_list = list(embeddings_results)
embeddings = np.concatenate(embeddings_list)
# Upsert in batches
for i in range(0, len(ids), self._max_batch_size):
batch_slice = slice(i, i + self._max_batch_size)
self._collection.upsert(
ids=ids[batch_slice],
embeddings=embeddings[batch_slice].tolist(),
documents=documents[batch_slice],
metadatas=metadatas[batch_slice],
)
return ids
except Exception as e:
logger.error(f"Error during ChromaDB upsert: {str(e)}")
raise
async def query(
self, query: str, top_k: int, ids: list[str] | None = None
) -> list[dict[str, Any]]:
try:
embedding = await self.embedding_func([query])
results = self._collection.query(
query_embeddings=embedding.tolist()
if not isinstance(embedding, list)
else embedding,
n_results=top_k * 2, # Request more results to allow for filtering
include=["metadatas", "distances", "documents"],
)
# Filter results by cosine similarity threshold and take top k
# We request 2x results initially to have enough after filtering
# ChromaDB returns cosine similarity (1 = identical, 0 = orthogonal)
# We convert to distance (0 = identical, 1 = orthogonal) via (1 - similarity)
# Only keep results with distance below threshold, then take top k
return [
{
"id": results["ids"][0][i],
"distance": 1 - results["distances"][0][i],
"content": results["documents"][0][i],
**results["metadatas"][0][i],
}
for i in range(len(results["ids"][0]))
if (1 - results["distances"][0][i]) >= self.cosine_better_than_threshold
][:top_k]
except Exception as e:
logger.error(f"Error during ChromaDB query: {str(e)}")
raise
async def index_done_callback(self) -> None:
# ChromaDB handles persistence automatically
pass
async def delete_entity(self, entity_name: str) -> None:
"""Delete an entity by its ID.
Args:
entity_name: The ID of the entity to delete
"""
try:
logger.info(f"Deleting entity with ID {entity_name} from {self.namespace}")
self._collection.delete(ids=[entity_name])
except Exception as e:
logger.error(f"Error during entity deletion: {str(e)}")
raise
async def delete_entity_relation(self, entity_name: str) -> None:
"""Delete an entity and its relations by ID.
In vector DB context, this is equivalent to delete_entity.
Args:
entity_name: The ID of the entity to delete
"""
await self.delete_entity(entity_name)
async def delete(self, ids: list[str]) -> None:
"""Delete vectors with specified IDs
Args:
ids: List of vector IDs to be deleted
"""
try:
logger.info(f"Deleting {len(ids)} vectors from {self.namespace}")
self._collection.delete(ids=ids)
logger.debug(
f"Successfully deleted {len(ids)} vectors from {self.namespace}"
)
except Exception as e:
logger.error(f"Error while deleting vectors from {self.namespace}: {e}")
raise
async def search_by_prefix(self, prefix: str) -> list[dict[str, Any]]:
"""Search for records with IDs starting with a specific prefix.
Args:
prefix: The prefix to search for in record IDs
Returns:
List of records with matching ID prefixes
"""
try:
# Get all records from the collection
# Since ChromaDB doesn't directly support prefix search on IDs,
# we'll get all records and filter in Python
results = self._collection.get(
include=["metadatas", "documents", "embeddings"]
)
matching_records = []
# Filter records where ID starts with the prefix
for i, record_id in enumerate(results["ids"]):
if record_id.startswith(prefix):
matching_records.append(
{
"id": record_id,
"content": results["documents"][i],
"vector": results["embeddings"][i],
**results["metadatas"][i],
}
)
logger.debug(
f"Found {len(matching_records)} records with prefix '{prefix}'"
)
return matching_records
except Exception as e:
logger.error(f"Error during prefix search in ChromaDB: {str(e)}")
raise
async def get_by_id(self, id: str) -> dict[str, Any] | None:
"""Get vector data by its ID
Args:
id: The unique identifier of the vector
Returns:
The vector data if found, or None if not found
"""
try:
# Query the collection for a single vector by ID
result = self._collection.get(
ids=[id], include=["metadatas", "embeddings", "documents"]
)
if not result or not result["ids"] or len(result["ids"]) == 0:
return None
# Format the result to match the expected structure
return {
"id": result["ids"][0],
"vector": result["embeddings"][0],
"content": result["documents"][0],
**result["metadatas"][0],
}
except Exception as e:
logger.error(f"Error retrieving vector data for ID {id}: {e}")
return None
async def get_by_ids(self, ids: list[str]) -> list[dict[str, Any]]:
"""Get multiple vector data by their IDs
Args:
ids: List of unique identifiers
Returns:
List of vector data objects that were found
"""
if not ids:
return []
try:
# Query the collection for multiple vectors by IDs
result = self._collection.get(
ids=ids, include=["metadatas", "embeddings", "documents"]
)
if not result or not result["ids"] or len(result["ids"]) == 0:
return []
# Format the results to match the expected structure
return [
{
"id": result["ids"][i],
"vector": result["embeddings"][i],
"content": result["documents"][i],
**result["metadatas"][i],
}
for i in range(len(result["ids"]))
]
except Exception as e:
logger.error(f"Error retrieving vector data for IDs {ids}: {e}")
return []