LightRAG/lightrag/kg/networkx_impl.py
yangdx 6d5c04d561 Reduce max_depth and update edge type in NetworkXStorage.
- Decreased max_depth from 5 to 3
- Changed edge type from "RELATED" to "DIRECTED"
2025-03-06 20:54:02 +08:00

432 lines
16 KiB
Python

import os
from dataclasses import dataclass
from typing import Any, final
import numpy as np
from lightrag.types import KnowledgeGraph, KnowledgeGraphNode, KnowledgeGraphEdge
from lightrag.utils import logger
from lightrag.base import BaseGraphStorage
import pipmaster as pm
if not pm.is_installed("networkx"):
pm.install("networkx")
if not pm.is_installed("graspologic"):
pm.install("graspologic")
import networkx as nx
from graspologic import embed
from .shared_storage import (
get_storage_lock,
get_update_flag,
set_all_update_flags,
is_multiprocess,
)
MAX_GRAPH_NODES = int(os.getenv("MAX_GRAPH_NODES", 1000))
@final
@dataclass
class NetworkXStorage(BaseGraphStorage):
@staticmethod
def load_nx_graph(file_name) -> nx.Graph:
if os.path.exists(file_name):
return nx.read_graphml(file_name)
return None
@staticmethod
def write_nx_graph(graph: nx.Graph, file_name):
logger.info(
f"Writing graph with {graph.number_of_nodes()} nodes, {graph.number_of_edges()} edges"
)
nx.write_graphml(graph, file_name)
@staticmethod
def _stabilize_graph(graph: nx.Graph) -> nx.Graph:
"""Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py
Ensure an undirected graph with the same relationships will always be read the same way.
"""
fixed_graph = nx.DiGraph() if graph.is_directed() else nx.Graph()
sorted_nodes = graph.nodes(data=True)
sorted_nodes = sorted(sorted_nodes, key=lambda x: x[0])
fixed_graph.add_nodes_from(sorted_nodes)
edges = list(graph.edges(data=True))
if not graph.is_directed():
def _sort_source_target(edge):
source, target, edge_data = edge
if source > target:
temp = source
source = target
target = temp
return source, target, edge_data
edges = [_sort_source_target(edge) for edge in edges]
def _get_edge_key(source: Any, target: Any) -> str:
return f"{source} -> {target}"
edges = sorted(edges, key=lambda x: _get_edge_key(x[0], x[1]))
fixed_graph.add_edges_from(edges)
return fixed_graph
def __post_init__(self):
self._graphml_xml_file = os.path.join(
self.global_config["working_dir"], f"graph_{self.namespace}.graphml"
)
self._storage_lock = None
self.storage_updated = None
self._graph = None
# Load initial graph
preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file)
if preloaded_graph is not None:
logger.info(
f"Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges"
)
else:
logger.info("Created new empty graph")
self._graph = preloaded_graph or nx.Graph()
self._node_embed_algorithms = {
"node2vec": self._node2vec_embed,
}
async def initialize(self):
"""Initialize storage data"""
# Get the update flag for cross-process update notification
self.storage_updated = await get_update_flag(self.namespace)
# Get the storage lock for use in other methods
self._storage_lock = get_storage_lock()
async def _get_graph(self):
"""Check if the storage should be reloaded"""
# Acquire lock to prevent concurrent read and write
async with self._storage_lock:
# Check if data needs to be reloaded
if (is_multiprocess and self.storage_updated.value) or (
not is_multiprocess and self.storage_updated
):
logger.info(
f"Process {os.getpid()} reloading graph {self.namespace} due to update by another process"
)
# Reload data
self._graph = (
NetworkXStorage.load_nx_graph(self._graphml_xml_file) or nx.Graph()
)
# Reset update flag
if is_multiprocess:
self.storage_updated.value = False
else:
self.storage_updated = False
return self._graph
async def has_node(self, node_id: str) -> bool:
graph = await self._get_graph()
return graph.has_node(node_id)
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
graph = await self._get_graph()
return graph.has_edge(source_node_id, target_node_id)
async def get_node(self, node_id: str) -> dict[str, str] | None:
graph = await self._get_graph()
return graph.nodes.get(node_id)
async def node_degree(self, node_id: str) -> int:
graph = await self._get_graph()
return graph.degree(node_id)
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
graph = await self._get_graph()
return graph.degree(src_id) + graph.degree(tgt_id)
async def get_edge(
self, source_node_id: str, target_node_id: str
) -> dict[str, str] | None:
graph = await self._get_graph()
return graph.edges.get((source_node_id, target_node_id))
async def get_node_edges(self, source_node_id: str) -> list[tuple[str, str]] | None:
graph = await self._get_graph()
if graph.has_node(source_node_id):
return list(graph.edges(source_node_id))
return None
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
graph = await self._get_graph()
graph.add_node(node_id, **node_data)
async def upsert_edge(
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str]
) -> None:
graph = await self._get_graph()
graph.add_edge(source_node_id, target_node_id, **edge_data)
async def delete_node(self, node_id: str) -> None:
graph = await self._get_graph()
if graph.has_node(node_id):
graph.remove_node(node_id)
logger.debug(f"Node {node_id} deleted from the graph.")
else:
logger.warning(f"Node {node_id} not found in the graph for deletion.")
async def embed_nodes(
self, algorithm: str
) -> tuple[np.ndarray[Any, Any], list[str]]:
if algorithm not in self._node_embed_algorithms:
raise ValueError(f"Node embedding algorithm {algorithm} not supported")
return await self._node_embed_algorithms[algorithm]()
# TODO: NOT USED
async def _node2vec_embed(self):
graph = await self._get_graph()
embeddings, nodes = embed.node2vec_embed(
graph,
**self.global_config["node2vec_params"],
)
nodes_ids = [graph.nodes[node_id]["id"] for node_id in nodes]
return embeddings, nodes_ids
async def remove_nodes(self, nodes: list[str]):
"""Delete multiple nodes
Args:
nodes: List of node IDs to be deleted
"""
graph = await self._get_graph()
for node in nodes:
if graph.has_node(node):
graph.remove_node(node)
async def remove_edges(self, edges: list[tuple[str, str]]):
"""Delete multiple edges
Args:
edges: List of edges to be deleted, each edge is a (source, target) tuple
"""
graph = await self._get_graph()
for source, target in edges:
if graph.has_edge(source, target):
graph.remove_edge(source, target)
async def get_all_labels(self) -> list[str]:
"""
Get all node labels in the graph
Returns:
[label1, label2, ...] # Alphabetically sorted label list
"""
graph = await self._get_graph()
labels = set()
for node in graph.nodes():
labels.add(str(node)) # Add node id as a label
# Return sorted list
return sorted(list(labels))
async def get_knowledge_graph(
self,
node_label: str,
max_depth: int = 3,
min_degree: int = 0,
inclusive: bool = False,
) -> KnowledgeGraph:
"""
Retrieve a connected subgraph of nodes where the label includes the specified `node_label`.
Maximum number of nodes is constrained by the environment variable `MAX_GRAPH_NODES` (default: 1000).
When reducing the number of nodes, the prioritization criteria are as follows:
1. min_degree does not affect nodes directly connected to the matching nodes
2. Label matching nodes take precedence
3. Followed by nodes directly connected to the matching nodes
4. Finally, the degree of the nodes
Args:
node_label: Label of the starting node
max_depth: Maximum depth of the subgraph
min_degree: Minimum degree of nodes to include. Defaults to 0
inclusive: Do an inclusive search if true
Returns:
KnowledgeGraph object containing nodes and edges
"""
result = KnowledgeGraph()
seen_nodes = set()
seen_edges = set()
graph = await self._get_graph()
# Initialize sets for start nodes and direct connected nodes
start_nodes = set()
direct_connected_nodes = set()
# Handle special case for "*" label
if node_label == "*":
# For "*", return the entire graph including all nodes and edges
subgraph = (
graph.copy()
) # Create a copy to avoid modifying the original graph
else:
# Find nodes with matching node id based on search_mode
nodes_to_explore = []
for n, attr in graph.nodes(data=True):
node_str = str(n)
if not inclusive:
if node_label == node_str: # Use exact matching
nodes_to_explore.append(n)
else: # inclusive mode
if node_label in node_str: # Use partial matching
nodes_to_explore.append(n)
if not nodes_to_explore:
logger.warning(f"No nodes found with label {node_label}")
return result
# Get subgraph using ego_graph from all matching nodes
combined_subgraph = nx.Graph()
for start_node in nodes_to_explore:
node_subgraph = nx.ego_graph(graph, start_node, radius=max_depth)
combined_subgraph = nx.compose(combined_subgraph, node_subgraph)
# Get start nodes and direct connected nodes
if nodes_to_explore:
start_nodes = set(nodes_to_explore)
# Get nodes directly connected to all start nodes
for start_node in start_nodes:
direct_connected_nodes.update(
combined_subgraph.neighbors(start_node)
)
# Remove start nodes from directly connected nodes (avoid duplicates)
direct_connected_nodes -= start_nodes
subgraph = combined_subgraph
# Filter nodes based on min_degree, but keep start nodes and direct connected nodes
if min_degree > 0:
nodes_to_keep = [
node
for node, degree in subgraph.degree()
if node in start_nodes
or node in direct_connected_nodes
or degree >= min_degree
]
subgraph = subgraph.subgraph(nodes_to_keep)
# Check if number of nodes exceeds max_graph_nodes
if len(subgraph.nodes()) > MAX_GRAPH_NODES:
origin_nodes = len(subgraph.nodes())
node_degrees = dict(subgraph.degree())
def priority_key(node_item):
node, degree = node_item
# Priority order: start(2) > directly connected(1) > other nodes(0)
if node in start_nodes:
priority = 2
elif node in direct_connected_nodes:
priority = 1
else:
priority = 0
return (priority, degree)
# Sort by priority and degree and select top MAX_GRAPH_NODES nodes
top_nodes = sorted(node_degrees.items(), key=priority_key, reverse=True)[
:MAX_GRAPH_NODES
]
top_node_ids = [node[0] for node in top_nodes]
# Create new subgraph and keep nodes only with most degree
subgraph = subgraph.subgraph(top_node_ids)
logger.info(
f"Reduced graph from {origin_nodes} nodes to {MAX_GRAPH_NODES} nodes (depth={max_depth})"
)
# Add nodes to result
for node in subgraph.nodes():
if str(node) in seen_nodes:
continue
node_data = dict(subgraph.nodes[node])
# Get entity_type as labels
labels = []
if "entity_type" in node_data:
if isinstance(node_data["entity_type"], list):
labels.extend(node_data["entity_type"])
else:
labels.append(node_data["entity_type"])
# Create node with properties
node_properties = {k: v for k, v in node_data.items()}
result.nodes.append(
KnowledgeGraphNode(
id=str(node), labels=[str(node)], properties=node_properties
)
)
seen_nodes.add(str(node))
# Add edges to result
for edge in subgraph.edges():
source, target = edge
edge_id = f"{source}-{target}"
if edge_id in seen_edges:
continue
edge_data = dict(subgraph.edges[edge])
# Create edge with complete information
result.edges.append(
KnowledgeGraphEdge(
id=edge_id,
type="DIRECTED",
source=str(source),
target=str(target),
properties=edge_data,
)
)
seen_edges.add(edge_id)
logger.info(
f"Subgraph query successful | Node count: {len(result.nodes)} | Edge count: {len(result.edges)}"
)
return result
async def index_done_callback(self) -> bool:
"""Save data to disk"""
# Check if storage was updated by another process
if is_multiprocess and self.storage_updated.value:
# Storage was updated by another process, reload data instead of saving
logger.warning(
f"Graph for {self.namespace} was updated by another process, reloading..."
)
self._graph = (
NetworkXStorage.load_nx_graph(self._graphml_xml_file) or nx.Graph()
)
# Reset update flag
self.storage_updated.value = False
return False # Return error
# Acquire lock and perform persistence
async with self._storage_lock:
try:
# Save data to disk
NetworkXStorage.write_nx_graph(self._graph, self._graphml_xml_file)
# Notify other processes that data has been updated
await set_all_update_flags(self.namespace)
# Reset own update flag to avoid self-reloading
if is_multiprocess:
self.storage_updated.value = False
else:
self.storage_updated = False
return True # Return success
except Exception as e:
logger.error(f"Error saving graph for {self.namespace}: {e}")
return False # Return error
return True