OpenMetadata/ingestion/tests/unit/test_ometa_mlmodel.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

90 lines
3.5 KiB
Python
Raw Permalink Normal View History

# Copyright 2025 Collate
# Licensed under the Collate Community License, Version 1.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# https://github.com/open-metadata/OpenMetadata/blob/main/ingestion/LICENSE
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
OpenMetadata MlModel mixin test
"""
from unittest import TestCase
import pandas as pd
import sklearn.datasets as datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from metadata.generated.schema.api.data.createMlModel import CreateMlModelRequest
from metadata.generated.schema.entity.data.mlmodel import MlModel
from metadata.generated.schema.entity.services.connections.metadata.openMetadataConnection import (
OpenMetadataConnection,
)
from metadata.generated.schema.security.client.openMetadataJWTClientConfig import (
OpenMetadataJWTClientConfig,
)
from metadata.ingestion.ometa.ometa_api import OpenMetadata
class OMetaModelMixinTest(TestCase):
"""
Test the MlModel integrations from MlModel Mixin
"""
server_config = OpenMetadataConnection(
hostPort="http://localhost:8585/api",
authProvider="openmetadata",
securityConfig=OpenMetadataJWTClientConfig(
jwtToken="eyJraWQiOiJHYjM4OWEtOWY3Ni1nZGpzLWE5MmotMDI0MmJrOTQzNTYiLCJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJzdWIiOiJhZG1pbiIsImlzQm90IjpmYWxzZSwiaXNzIjoib3Blbi1tZXRhZGF0YS5vcmciLCJpYXQiOjE2NjM5Mzg0NjIsImVtYWlsIjoiYWRtaW5Ab3Blbm1ldGFkYXRhLm9yZyJ9.tS8um_5DKu7HgzGBzS1VTA5uUjKWOCU0B_j08WXBiEC0mr0zNREkqVfwFDD-d24HlNEbrqioLsBuFRiwIWKc1m_ZlVQbG7P36RUxhuv2vbSp80FKyNM-Tj93FDzq91jsyNmsQhyNv_fNr3TXfzzSPjHt8Go0FMMP66weoKMgW2PbXlhVKwEuXUHyakLLzewm9UMeQaEiRzhiTMU3UkLXcKbYEJJvfNFcLwSl9W8JCO_l0Yj3ud-qt_nQYEZwqW6u5nfdQllN133iikV4fM5QZsMCnm8Rq1mvLR0y9bmJiD7fwM1tmJ791TUWqmKaTnP49U493VanKpUAfzIiOiIbhg"
),
)
metadata = OpenMetadata(server_config)
iris = datasets.load_iris()
def test_get_sklearn(self):
"""
Check that we can ingest an SKlearn model
"""
df = pd.DataFrame(self.iris.data, columns=self.iris.feature_names)
y = self.iris.target
x_train, x_test, y_train, y_test = train_test_split(
df, y, test_size=0.25, random_state=70
)
dtree = DecisionTreeClassifier()
dtree.fit(x_train, y_train)
entity_create: CreateMlModelRequest = self.metadata.get_mlmodel_sklearn(
name="test-sklearn",
model=dtree,
description="Creating a test sklearn model",
)
entity: MlModel = self.metadata.create_or_update(data=entity_create)
self.assertEqual(entity.name, entity_create.name)
self.assertEqual(entity.algorithm, "DecisionTreeClassifier")
self.assertEqual(
{feature.name.root for feature in entity.mlFeatures},
{
"sepal_length__cm_",
"sepal_width__cm_",
"petal_length__cm_",
"petal_width__cm_",
},
)
hyper_param = next(
iter(
param for param in entity.mlHyperParameters if param.name == "criterion"
),
None,
)
self.assertIsNotNone(hyper_param)