Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

430 lines
11 KiB
Markdown
Raw Permalink Normal View History

2024-06-18 15:53:06 +02:00
---
title: Run the MongoDB Connector Externally
slug: /connectors/database/mongodb/yaml
---
{% connectorDetailsHeader
name="MongoDB"
stage="PROD"
platform="OpenMetadata"
availableFeatures=["Metadata", "Data Profiler", "Sample Data"]
2024-06-18 15:53:06 +02:00
unavailableFeatures=["Query Usage", "Data Quality", "dbt", "Owners", "Lineage", "Column-level Lineage", "Tags", "Stored Procedures"]
/ %}
In this section, we provide guides and references to use the MongoDB connector.
Configure and schedule MongoDB metadata workflows from the OpenMetadata UI:
- [Requirements](#requirements)
- [Metadata Ingestion](#metadata-ingestion)
- [Data Profiler](#data-profiler)
{% partial file="/v1.7/connectors/ingestion-modes-tiles.md" variables={yamlPath: "/connectors/database/mongodb/yaml"} /%}
2024-06-18 15:53:06 +02:00
{% partial file="/v1.7/connectors/external-ingestion-deployment.md" /%}
2024-06-18 15:53:06 +02:00
## Requirements
To fetch the metadata from MongoDB to OpenMetadata, the MongoDB user must have access to perform `find` operation on collection and `listCollection` operations on database available in MongoDB.
### Python Requirements
{% partial file="/v1.7/connectors/python-requirements.md" /%}
2024-06-18 15:53:06 +02:00
To run the MongoDB ingestion, you will need to install:
```bash
pip3 install "openmetadata-ingestion[mongo]"
```
## Metadata Ingestion
All connectors are defined as JSON Schemas.
[Here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/entity/services/connections/database/mongoDBConnection.json)
you can find the structure to create a connection to MongoDB.
In order to create and run a Metadata Ingestion workflow, we will follow
the steps to create a YAML configuration able to connect to the source,
process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following
[JSON Schema](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/workflow.json)
### 1. Define the YAML Config
This is a sample config for MongoDB:
{% codePreview %}
{% codeInfoContainer %}
#### Source Configuration - Service Connection
{% codeInfo srNumber=1 %}
**username**: Username to connect to Mongodb. This user must have access to perform `find` operation on collection and `listCollection` operations on database available in MongoDB.
{% /codeInfo %}
{% codeInfo srNumber=2 %}
**password**: Password to connect to MongoDB.
{% /codeInfo %}
{% codeInfo srNumber=3 %}
**hostPort**: When using the `mongodb` connecion schema, the hostPort parameter specifies the host and port of the MongoDB. This should be specified as a string in the format `hostname:port`. E.g., `localhost:27017`. When using the `mongodb+srv` connection schema, the hostPort parameter specifies the host and port of the MongoDB. This should be specified as a string in the format `hostname`. E.g., `cluster0-abcde.mongodb.net`.
Using Atlas? Follow [this guide](https://www.mongodb.com/docs/guides/atlas/connection-string/) to get the connection string.
2024-06-18 15:53:06 +02:00
{% /codeInfo %}
{% codeInfo srNumber=6 %}
**databaseName**: Optional name to give to the database in OpenMetadata. If left blank, we will use default as the database name.
{% /codeInfo %}
{% partial file="/v1.7/connectors/yaml/database/source-config-def.md" /%}
2024-06-18 15:53:06 +02:00
{% partial file="/v1.7/connectors/yaml/ingestion-sink-def.md" /%}
2024-06-18 15:53:06 +02:00
{% partial file="/v1.7/connectors/yaml/workflow-config-def.md" /%}
2024-06-18 15:53:06 +02:00
#### Advanced Configuration
{% codeInfo srNumber=7 %}
**Connection Options (Optional)**: Enter the details for any additional connection options that can be sent to database during the connection. These details must be added as Key-Value pairs.
2024-06-18 15:53:06 +02:00
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml {% isCodeBlock=true %}
source:
type: mongodb
serviceName: local_mongodb
serviceConnection:
config:
type: MongoDB
```
```yaml {% srNumber=1 %}
username: username
```
```yaml {% srNumber=2 %}
password: password
```
```yaml {% srNumber=3 %}
hostPort: localhost:27017
```
```yaml {% srNumber=7 %}
# connectionOptions:
# key: value
```
```yaml {% srNumber=6 %}
databaseName: custom_database_name
```
{% partial file="/v1.7/connectors/yaml/database/source-config.md" /%}
2024-06-18 15:53:06 +02:00
{% partial file="/v1.7/connectors/yaml/ingestion-sink.md" /%}
2024-06-18 15:53:06 +02:00
{% partial file="/v1.7/connectors/yaml/workflow-config.md" /%}
2024-06-18 15:53:06 +02:00
{% /codeBlock %}
{% /codePreview %}
{% partial file="/v1.7/connectors/yaml/ingestion-cli.md" /%}
2024-06-18 15:53:06 +02:00
## Data Profiler
The Data Profiler workflow will be using the `orm-profiler` processor.
After running a Metadata Ingestion workflow, we can run Data Profiler workflow.
While the `serviceName` will be the same to that was used in Metadata Ingestion, so the ingestion bot can get the `serviceConnection` details from the server.
### Limitations
The MongodDB data profiler current supports only the following features:
1. **Row count**: The number of rows in the collection. Sampling or custom query is not supported.
2. **Sample data:** If a custom query is defined it will be used for sample data.
### 1. Define the YAML Config
This is a sample config for the profiler:
{% codePreview %}
{% codeInfoContainer %}
{% codeInfo srNumber=13 %}
#### Source Configuration - Source Config
You can find all the definitions and types for the `sourceConfig` [here](https://github.com/open-metadata/OpenMetadata/blob/main/openmetadata-spec/src/main/resources/json/schema/metadataIngestion/databaseServiceProfilerPipeline.json).
**generateSampleData**: Option to turn on/off generating sample data.
{% /codeInfo %}
{% codeInfo srNumber=16 %}
**processPiiSensitive**: Optional configuration to automatically tag columns that might contain sensitive information.
{% /codeInfo %}
{% codeInfo srNumber=18 %}
**timeoutSeconds**: Profiler Timeout in Seconds
{% /codeInfo %}
{% codeInfo srNumber=20 %}
**schemaFilterPattern**: Regex to only fetch tables or databases that matches the pattern.
{% /codeInfo %}
{% codeInfo srNumber=21 %}
**tableFilterPattern**: Regex to only fetch tables or databases that matches the pattern.
{% /codeInfo %}
{% codeInfo srNumber=22 %}
#### Processor Configuration
Choose the `orm-profiler`. Its config can also be updated to define tests from the YAML itself instead of the UI:
**tableConfig**: `tableConfig` allows you to set up some configuration at the table level.
{% /codeInfo %}
{% codeInfo srNumber=23 %}
#### Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as `type: metadata-rest`.
{% /codeInfo %}
{% codeInfo srNumber=24 %}
#### Workflow Configuration
The main property here is the `openMetadataServerConfig`, where you can define the host and security provider of your OpenMetadata installation.
For a simple, local installation using our docker containers, this looks like:
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.yaml" %}
```yaml {% isCodeBlock=true %}
source:
type: monogodb
serviceName: local_mongodb
sourceConfig:
config:
type: Profiler
```
```yaml {% srNumber=13 %}
generateSampleData: true
```
```yaml {% srNumber=16 %}
processPiiSensitive: false
```
```yaml {% srNumber=18 %}
# timeoutSeconds: 43200
```
```yaml {% srNumber=20 %}
# schemaFilterPattern:
# includes:
# - schema1
# - schema2
# excludes:
# - schema3
# - schema4
```
```yaml {% srNumber=21 %}
# tableFilterPattern:
# includes:
# - table1
# - table2
# excludes:
# - table3
# - table4
```
```yaml {% srNumber=22 %}
processor:
type: orm-profiler
config: {} # Remove braces if adding properties
# tableConfig:
# - fullyQualifiedName: <table fqn>
# profileQuery: <query to use for fetching the sample data>
```
```yaml {% srNumber=23 %}
sink:
type: metadata-rest
config: {}
```
```yaml {% srNumber=24 %}
workflowConfig:
# loggerLevel: DEBUG # DEBUG, INFO, WARN or ERROR
openMetadataServerConfig:
hostPort: <OpenMetadata host and port>
authProvider: <OpenMetadata auth provider>
```
{% /codeBlock %}
{% /codePreview %}
- You can learn more about how to configure and run the Profiler Workflow to extract Profiler data and execute the Data Quality from [here](/how-to-guides/data-quality-observability/profiler/workflow)
2024-06-18 15:53:06 +02:00
### 2. Prepare the Profiler DAG
Here, we follow a similar approach as with the metadata and usage pipelines, although we will use a different Workflow class:
{% codePreview %}
{% codeInfoContainer %}
{% codeInfo srNumber=25 %}
#### Import necessary modules
The `ProfilerWorkflow` class that is being imported is a part of a metadata orm_profiler framework, which defines a process of extracting Profiler data.
Here we are also importing all the basic requirements to parse YAMLs, handle dates and build our DAG.
{% /codeInfo %}
{% codeInfo srNumber=26 %}
**Default arguments for all tasks in the Airflow DAG.**
- Default arguments dictionary contains default arguments for tasks in the DAG, including the owner's name, email address, number of retries, retry delay, and execution timeout.
{% /codeInfo %}
{% codeInfo srNumber=27 %}
- **config**: Specifies config for the profiler as we prepare above.
{% /codeInfo %}
{% codeInfo srNumber=28 %}
- **metadata_ingestion_workflow()**: This code defines a function `metadata_ingestion_workflow()` that loads a YAML configuration, creates a `ProfilerWorkflow` object, executes the workflow, checks its status, prints the status to the console, and stops the workflow.
{% /codeInfo %}
{% codeInfo srNumber=29 %}
- **DAG**: creates a DAG using the Airflow framework, and tune the DAG configurations to whatever fits with your requirements
- For more Airflow DAGs creation details visit [here](https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html#declaring-a-dag).
{% /codeInfo %}
{% /codeInfoContainer %}
{% codeBlock fileName="filename.py" %}
```python {% srNumber=26 %}
import yaml
from datetime import timedelta
from airflow import DAG
from metadata.workflow.profiler import ProfilerWorkflow
2024-06-18 15:53:06 +02:00
try:
from airflow.operators.python import PythonOperator
except ModuleNotFoundError:
from airflow.operators.python_operator import PythonOperator
from airflow.utils.dates import days_ago
```
```python {% srNumber=27 %}
default_args = {
"owner": "user_name",
"email_on_failure": False,
"retries": 3,
"retry_delay": timedelta(seconds=10),
"execution_timeout": timedelta(minutes=60),
}
```
```python {% srNumber=28 %}
config = """
<your YAML configuration>
"""
```
```python {% srNumber=29 %}
def metadata_ingestion_workflow():
workflow_config = yaml.safe_load(config)
workflow = ProfilerWorkflow.create(workflow_config)
workflow.execute()
workflow.raise_from_status()
workflow.print_status()
workflow.stop()
```
```python {% srNumber=30 %}
with DAG(
"profiler_example",
default_args=default_args,
description="An example DAG which runs a OpenMetadata ingestion workflow",
start_date=days_ago(1),
is_paused_upon_creation=False,
catchup=False,
) as dag:
ingest_task = PythonOperator(
task_id="profile_and_test_using_recipe",
python_callable=metadata_ingestion_workflow,
)
```
{% /codeBlock %}
{% /codePreview %}
## dbt Integration
{% tilesContainer %}
{% tile
icon="mediation"
title="dbt Integration"
description="Learn more about how to ingest dbt models' definitions and their lineage."
link="/connectors/ingestion/workflows/dbt" /%}
{% /tilesContainer %}